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CONVERSION TABLE

Conversion factors for U.S. Customary to metric (SI) units of measurement

MULTIPLY BY - - TO GET
TO GET -- BY - DIVIDE

angstrom 1.000000 x E-10 meters (M)

atm,:sphere (normal) 1.01325 x E +2 kilo pascal (kPa)

bar 1.000000 x E +2 kilo pascal (kPa)

barn 1.000000 x E -28 meter2 
(M

2
)

British thermal unit (thermochemical) 1.054350 x E +3 joule (J)

calorie (thermochemical) 4.184000 joule (J)
cal (thermochemical) / cm 2  4.184000 x E -2 mega joule/m 2 (MJ/m 2 )

curie 3.700000 x E +1 *giga becquerel (GBq)

degree (angle) 1.745329 E -2 radian (rad)
degree Farenheit tK = (t, + 459.67)/1.8 degree kelvin (K)

electron voit 1.60219 x E -19 joule (J)
erg 1.000000 x E -7 joule (J)

erg/second 1.000000 x E -7 watt (W)
f.ot 3.048000 x E -1 meter (i)

f ot-pound-force 1.355818 joule (J)
gallon (U_.S. liquid) 3.785412 x E -3 meter3 

(M
3

)

inch 2.540000 . E -2 meter (M)
jerk 1.000000 . E +9 joule (J)

joule/kilogram (J/kg) (radiation dose absorbed) 1.000000 Gray (Gy)
kilotons 4.183 terajoules
kip (1000 lbf) 4.448222 . E + 3  newton (N)

kip/ inch" (ksi) 6.894757 . E -3 kilo pascal (kPa)

ktap 1.000000 x E +2 newton-second/m 2 (N-s/m 2 )

micron 1.000000 x E -6 meter (m)
mil 2.540000 . E -5 meter (M)

mile (international) 1.609344 x E +3 meter (i)

ounce 2.834952 x E -2 kilogram (kg)
pound-force (Ilbs avoirdupois) 4.448222 newton (N)

pound-force inch 1.129848 x E -1 newton-meter (N m)

pound-force/inch 1.751268 x E +2 newton/meter (N/m)

pound-force/foot 2  4.788026 x E -2 kilo pascal (kPa)

pound-force/inch3 (psi) 6.894757 kilo pascal (kPa)

pound-mass (Ibm avoirdupois) 4.535924 x E -1 kilogram (kg)

pound-mass-foot2 (moment of inertia) 4.214011 x E -2 kilogram-meter 2 (kg m2 )

pound-mass/foot 3  1.601846 x E +1 kilogram/meter 3 (kg/m 3 )

rad (radiation dose absorbed) 1.000000 E -2 "Gray (Gy)

roentgen 2.579760 x E -4 coulomb/kilogram (C/kg)

shake 1.000000 . E -8 second (s)
slug 1.459390 x E +1 kilogram (kg)

t,rr (mrm Hg, 0" C) 1.333220 x E -1 kilo pascal (kPa)

'IT2 becquerel (13q) is the SI unit of radioactivity; 1 Bq = 1 event/s.
-The Gray (Gy) is the SI unit of absorbed radiation.
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SECTION 1
INTRODUCTION

Satellite communications systems that utilize transionospheric propagation links
may he subject to severe performance degradation when the ionosphere is highly
disturbed by high altitude nuclear explosions [Arendt and Soicher 1964; King and
Fleming 19801 or by chemical releascs [Davis et al. 1974; VWolcott et al. 19781. During
these events, the increased electron concentrations and the irregular structure of the
ionization can lead to intense Rayleigh signal scintillation at the radio frequencies (RF)
used for satellite communication links and space radars.

Under severe scintillation conditions, the signal incident at the receiver can vary
randomly in amplitude, phase, time-of-arrival, and angle-of-arrival. If all frequency
components of the signal vary essentially identically with time, the propagation channel
is referred to as nonselective or flat fading. When the scintillations exhibit statistical
decorrelation at different frequencies within the signal bandwidth, the channel is
referred to as frequency selective. Frequency selective scintillations are therefore
encountered when the signal bandwidth exceeds the frequency selective bandwidth of
the channel. When the scintillations exhibit statistical decorrelation across the face of
an aperture antenna, the channel may also be referred to as spatially selective.
Spatially selective scintillations are therefore encountered when the antenna aperture
size exceeds the decorrelation distance of the incident signal.

Under conditions where the signal is spatially selective, the antenna beamwidth is
smaller than the angle-of-arrival fluctuations and the effect of the antenna is to
attenuate the incident signal that is arriving at off-boresight angles. In the spatial
domain, the incident electric field is somewhat decorrelated across the face of the
antenna. The induced voltages in the antenna then do not add coherently as they would
for an incident plane wave, resulting in a loss in the gain of the antenna. Because of
this angular filtering or spatial selectivity, the second-order statistics of the signal at the
output of the antenna will be different than those of the incident signal.

The effects of antennas on siglials that have propagated through randomly
ionized media have been reported by Wittwer [19821, Knepp [19851, and Dana 119861.
This report is an extension of the latter reference, and its purpose is to describe the
general model for temporal fluctuations that has recently been developed by Dr. Leon
A. Wittwer of the Defense Nuclear Agency. A review of the basic theory of RF
propagation through random media is presented, and the channel simulation technique
for the general model is described.

The starting point is the generalized power spectral density (GPSD). The first
part of this report is a review of the derivation of the GPSD. The intent of this review
is to give the reader an understanding of the underlying physics that are contained in
the GPSD and an understanding of the assumptions used to calculate the GPSD. The
first part of this review follows Tatarskii 11971, §64-651. The discussion of the
general model is new in this report.

The derivation of the GPSD starts with Maxwell's equations from which the
parabolic wave equation is derived. The parabolic wave equation can be solved to give

I ~ I IIII



the received electric field foi a specific electron density distribution in the ionosphere.
However, the electron density distribution is a raniom process so the received electric
field is also a random process. The parabolic wave equaiun is therefore used to derive
an equation for the two-position, two-frequency, two-time mutual coherence function
of the electric field, F(8r,&o,8t). The solution of the differential equation for F,
which is also a solution of Maxwell's equations, then provides a description of the
second-order statistics of the received electric field. The Fourier transform of the
mutual coherence function is the GPSD of the received signal.

Once the GPSD is obtained for the general model, it is used to compute the mean
power, decorrelation time, and frequency selective bandwidth of the signal out of
anisotropic antennas with arbitrary pointing angles relative to the line-of-sight. These
results are taken from Frasier 119881. Several examples are given that illustrate the
general model and the effects of antenna pointing.

In Section 4 an analytical/numerical technique is described that is used to
generate realizations of the impulse response function of the signal after propagation
through randomly ionized media and reception by multiple antennas. The statistical
realizations of the signal at the outputs of multiple antennas are assumed to have
Rayleigh amplitude statistics and are therefore valid under strong-scattering conditions.
The spatial and frequency correlation properties of the realizations are given by the
mutual coherence function. These realizations of the impulse response function are
then used to construct the received signal and may be used to exercise simulations of
transionospheric communications links or space radars.
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SECTION 2
THEORY

The starting point for this discussion of the general model is the generalized
power spectral density (GPSD). This section presents a review of the derivation of the
GPSD and discusses the physics that are contained in this important function.

In deriving the GPSD, two key approximations are usually made about the
spatial and temporal electron density fluctuations that cause the scattering in the
ionosphere. The first of these is the delta-layer approximation which requires that the
scattering occur in an infinitesimally thin layer normal to the line-of-sight. This
approximation has been relaxed in the calculations of Witwer [1982] and Knepp [1983]
and has been found to result in small errors in the GPSD provided that the propagation
parameters (frequency selective bandwidth, decorrelation time and decorrelation
distance) that characterize the channel are properly specified. The delta-layer
approximation is not, in general, adequate to calculate the propagation parameters.

The second approximation that is usually made is Taylor's frozen-in hypothesis
which treats the ionization fluctuations or striations as rigid "frozen-in" structures that
drift across the line-of-sight. Under this model there is strong coupling between the
spatial and temporal variations of the random electric field that is incident at the plane
of the receiver. Wittwer [1988] has recently proposed a "general model" that smoothly
varies between the frozen-in model and a turbulent model where the temporal and
spatial ionization fluctuations are uncorrelated. The GPSD for the general model will
be calculated in this section.

An analytic solution is obtained in this section for the two-position, two-
frequency, two-time mutual coherence function F(8r,8co,8t) of the complex electric
field incident on the plane of the receiving antenna. This solution is valid for arbitrary
line-of-sight geometries relative to the ionization structures in the ionosphere that cause
the scattering of the RF wave. The mutual coherence function then provides the basis
for the antenna aperture effects calculations and for the statistical signal generation
techniques discussed in subsequent sections of this report. The Fourier transform of
the mutual coherence function is the GPSD of the received signal.

2.1 PARABOLIC WAVE EQUATION.

Consider a monochromatic spherical wave with an electric field E(r,.,t) which
is a function of position r, carrier radian frequency co, and time t. The wave
originates from a transmitter located at r = (0,0,-zt) and propagates in free space in the
positive z direction until it is incident on an irregularly ionized layer which extends
from 0 < z < L and is infinite in the x-y plane. After emerging from the layer at
z = L, the wave propagates in free space to a receiver located at r = (0,0,zr). This
geometry is shown in Figure 1.

3



Transmitter

Zt

i . Layer

Zr  L

Receiver

Figure 1. Propagation geometry.

The propagation of the wave is governed by Maxwell's equations:

VxE+c t =( V = 0

V X 31-c at -V 0

where c is the speed of light in vacuum, 31 is the magnetic field, and c is the dielectric
constant.

The dielectric constant of the propagation medium undergoes random
fluctuations with a characteristic frequency which is assumed to be small when
compared to the carrier frequency of the wave. With this assumption, the electric and
magnetic fields may be written as the product of slowly-varying complex envelopes,
denoted E and H, times exp(iot):

E(r,w,t) = E(r,o,t) ei(ot (2)

3f(r,o,t) = H(r,O,t) eiWOl

Inserting these into Maxwell's equations gives

VxE+ikH = 0 (3a)

V xH-iEkE = 0 (3b)

4



where k = &o/c is the wave number of the carrier. After applying the curl operator to
Equation 3a and substituting Equation 3b for the V x H term, the equation for E
becomes

V xV xE- k2E = 0. (4)

The vector identity V x V x E = V(V.E) - V2E reduces the curl curl term in Equation
4 with the result

V(VE)-V2E-k 2 E = 0 (5)

The V E term is reduced by expanding the divergence equation for E:

VEE EV.E+E.VF = 0 (6)

or

V.E = - E V (In c) (7)

The wave equation for the complex envelope of the electric field then becomes

V-E+ck 2 E+V [E.V (in )]=0 (8)

The dielectric constant u in a plasma at radio frequencies is given approximately
by

(9)
(0

where the plasma frequency is

= 4rt re c2 ne(r,t) (10)

The quantity re is the classical electron radius (re 2.8179x 10 - 5 m) and ne(r,t) is the
free electron density as a function of position and time. Equation 9 is valid when the
carrier frequency is large compared to the plasma frequency. The free electron
density is a random variable that will be represented as a mean value plus a random
variation:

ne(r,t) = (ne + Ane(r,t) (11)

The electron density fluctuation Ane(r,t) is assumed to be a zero mean random process.
The term F k2 in the wave equation may now be rewritten as

k2  = (k) 2 (1 - 1) (12)

where

5



k. ,), 02 4 rreC 2 no} ] 13-- 2  (13)

and

C Anc(r,t. (0 (14)

The quantity (e)) is the plasma frequency evaluated at the mean electron density.

The magnitude of the gradient term V(ln c) in the wave equation may be
estimated as follows:

V I l F 4] ~ 41rre(ne)c2 [PflIIV(ln £) = n 1 - 02j J - 02 I n2 L

(15)

where L0 is the scale size of the electron density fluctuations. As long as L0 >> k,

where k is the RF wavelength, the term V[E.V(ln s)] is small compared to Ek2E and
may be ignored. The steps that follow are therefore only valid when the scale size of
the electron density fluctuations is large compared to the carrier wavelength. With this
restriction, the wave equation takes the Helmholtz form:

V2E + (k) 2 (1 - e) E = 0 . (16)

Now consider the complex components of the electric field and let

E(r,o,t) = U(r,w,t) exp [- J (k(z')) dz' ] . (17)

This scalar equation for E may be used because it is usual for trans-ionospheric RF
links to be circularly polarized. It is therefore not necessary to carry out separate
calculations for each polarization state. The exponential term in Equation 17
represents the dispersive effects of the smooth plasma and will be discussed later in this
section. The electric field envelope U contains the diffractive effects that are of
interest under strong-scattering conditions. Substituting Equation 17 for E(r,(o,t) in
the wave equation gives the following differential equation for U:

2 ku _ 2I
VIU + az 2 - 2i(k) -- (kE 1u = 0 (18)

where

2 a2 a2  (19)

The complex amplitude U varies as the electron density fluctuations. The second
derivative a 2U/z 2 is then the order of U/L2. On the other hand, the term (k) alU/az

6



varies as U/.Lo. As long as k << L0, the second derivative is small compared to the
first derivative and may be ignored. This is equivalent to neglecting reflected rays and
is called the "parabolic" approximation. The parabolic wave equation is then

aU
VU - 2i(k) -- (k)2LcU = 0 . (20)

It will be seer, that this parabolic or small-angle scattering approximation is robust in
that it degrades gracefully as the scattering angles get large. The source term £1U in
the parabolic wave equation is a function of frequency and the electron density
fluctuations. Different frequencies within a signal bandwidth may therefore propagate
differently through the same ionization structure. When this happens, the propagation
channel is said to be frequency selective.

2.2 TRANSPORT EQUATION.

A partial differential equation for the two-position, two-frequency, two-time
mutual coherence function is derived from the parabolic wave equation in this section.
This transport equation is derived using the Novikov theorem which requires that the
electron density fluctuations be normally distributed. However, Lee and Jokipii
[1975a] give an alternative derivation that relaxes this assumption.

2.2.1 First Form of the Transport Equation.

The two-position, two-frequency, two-time mutual coherence function is defined
in a plane normal to the line-of-sight as

F = (U(P 1 ,Z,0)1 ,tl) U*(p 2 ,z,c02 ,t 2 ))  (21)

where p is a two-dimensional position vector in the plane normal to the line-of-sight.

In order to obtain an equation for F, the parabolic wave equation for
U(p1,z,o1,t1) is multiplied by U*(p 2,z,0 2,t2). This results in the following equation:

_ 2u 1,'1:t:
V 1 U(P1 ,Z, 1),tl)U*(P 2,z,0 2,t2) - 2i U(Pz, ) U*(P2,z,)2,t2)

- k, c1(p1,z,c0o1,t1 ) U(p1,z,Q01 ,t1 ) U*(p 2,z,0 2,t2) = 0 (22a)

where kj is given by Equation 13 evaluated at frequency wj, £ 1(pj,z,C.j,tj) is given by
Equation 14, and the Laplacian is given by Equation 19 evaluated at pj. A similar
equation can be written down by interchanging the subscripts I and 2 and by taking the
complex conjugate with the result:

k2 V 2U*(P2,z,0)2,t2)U(PI,Z,(ol,tl) + 2i - -- 2 U(p 1,z,(0,t)

- k2 E1(p2,z,o 2,t2) U*(P 2,z,02,t2) U(p1,z,w 1,t1) = 0 . (22b)

Upon subtracting Equation 22b from Equation 22a and taking the expectation value,
the equation for F is

7



V I F V: F

1 2 1 oF

- k, (E (Pi ,z, 1O ,t1 ) U(P 1 ,z,, 1 ,tl) U*(p 2 ,z,co2,t2)) (23)

+ k2 (KI(P2,z,0)2,t 2) U*(p 2,z,W2,t 2) U(p,z,c.Ol,t 1 )) = 0

The expectation of the two source terms in this equation must be carefully
evaluated. They involve the product of UU* and el where - is proportional to the
fluctuations in the electron density. However, the electric ield complex envelope U is
also a function of the electron density fluctuations that are encountered along the
propagation path. Therefore U and F, are correlated.

2.2.2 Novikov Theorem.

The Novikov theorem is used to evaluate the source terms in Equation 23. This
theorem is proven in Tatarskii [1971, §65] and Ishimaru [1978, pp. 457-458). The
theorem states that

(fj(R)f 2(fl)) = (fl(R)f 1 (R')) ,f2(R') dnR' (24)

where fl(R) is a zero-mean, normally-distributed random function of the n-
dimensional vector R, f-(fl) is a function of fl, and 8f 2/8f 1 is a functional derivative.
In applying this theorem, f, = F1 and f2 = UU*. The theorem is proven by expanding
f.I(fI) in a Taylor series.

2.2.3 Source Terms.

Before proceeding with the evaluation of the source terms, it will be convenient
to write cl as the product of a frequency term and a term that varies only with space
and time:

C1(p,zO,)t) = (p,z,t) 3(w) (25)

where

Ane(p,z,t)
(p,z,t) - (ne) (26)

is a random function of the electron density fluctuations and

((1 2)
- 2 (27)

is a deterministic function of frequency and the mean free electron density.
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For the first source term in Equation 23 a straightforward application of the

Novikov theorem yields:

S1  k- k' 1)( ) (P1,zt 1 ) U(P ,z,w 1 ,tl ) U*(P2,z,(o2 ,t2 )) (28)

0) CIO 00

=k, P3(w,) ) f dz' .f d- p ' f dt' (1r(pj,z,tj) (P',Z',t'))

-00 -00 0

K P 6Lp1 j ,z, ) 1,,t 1 ) 6U * (P2 ,z,wJ 2 ,t2)\
S\- u"zs,)+ u(p,,z,W,t,) /'

At this point the electron density fluctuations are assumed to be stationary and

delta correlated along the z axis. This Markov assumption has the mathematical form

(,p(9,z,t)(p',z',t')) = 6(z-z') A (p-p',t-t') (29)

where () is the Dirac delta function. The structure function A (p-p',t-t') is the
autocorrelation function of the electron density fluctuations. The Markov assumption
is discussed in some detail by Tatarskii 11971, §641 and is based on the fact that
fluctuations in the dielectric constant in the direction of propagation have little effect
on the trans-vcrse fluctuation characteristics of the electric field. It is the fluctuations
of the dielectric constant transverse to the direction of propagation that dominate the
scattering and the transverse fluctuations of the electric field.

Under the assumption of small-angle scattering for which the parabolic wave
equation is valid, the component of the electric field traveling in the backward
direction will be negligible compared to the component traveling in the forward
direction. The electric field U(p,z,co,t) may then be assumed to depend on (p',Z,')
only for z' < z (i.e. the electric field does not depend on electron density irregularities
that have not yet been encountered along the forward propagation path). Also,
U(p,z,o,t) depends on (p',z',t) only for t' < t (i.e. the electric field does not depend
on irregularities that have not yet occurred). Thus 8U(p,z,co,t)/85(p',z',t') is equal to
0 for z' > z and for t' > t.

The source function S1 may now be rewritten as

Z 00 t

Si = k 13, f dz' 6(z-z') J d2p' f dt' A,(pl-p',tI-C) x (30)
-00 -00 -00

______________) 6U *(P 2,Z,(02 ,t 2)\K 5g(p',z,t) U*(P2,z 2Et) + U(P 1 ,z',c1,tl) 86(p'z't')

where Pj is given by Equation 27 evaluated at wj. Recalling that

9



f 5(x'-x) dx' 1(31)
- CI

the source term is further reduced to

Si 13 ff dp ' A:(pj-p',tj-t') x (32)

K ZLp,CO 1 , t I 6U*(P2,z,0w,2
61 :("ZX)U*(P 2,z,0w2,t2) + U(P1 ,z,o 1),t 1 ) - 5(P'zt'

The parabolic wave equation is used to evaluate the functional derivatives 8U/6 .
Integrating this equation from -0to z results in

z

JV ,U(p,z',oj,t) dz" -2i(k) IU(p,z,co,t) - U0(p,co)] - (33)
-00

z
(ke 3(:) (Plz",t0 U(p,z",cO,t) dz' = 0

-CIO

where U0(p,wo) is the transmitted signal. After applying the operator 8/6 (p',z',t'),
where -00 < z' < z and -00 < t' < t, and noting that

8(,t = 8(z-z') 6 (P-P') 8(t-t') (34)

Eq uation 33 becomes

ik)6U(P,Z'c,t) + (k)' PI(w) 8(p-p') 8(t-t') U(p,z,co,t)

+ f (k) 2'(w) (p,z',t) -i V _]6U(P'z",Wt t) =0(3.I. ] ( ',z',t')-

The lower limit of the integral in this equation is z' because 8U(p,z,co),t)/ (p',z',t') is
zero for z < z'. Because the source term contains factors of the form
6U(P,coW,t)/64(P',,), z' is set equal to z in Equation 35 with the result

8=,P,~, 2 8(p-p') 6(t-fl) U(p,z,cO,t) .(36)

10



After substituting this into Equation 32, the source term becomes

00 00

S= f d2 p ' Jdt' A J(pI-p',tl-t') F
-00 -00

4 4-i 5( 2- ') 8(t2-t') (37)

=L A (OO) F - A,(p 1 -P2 ,t1 -t2) F

A similar expression may be written down for the second source term in Equation 23:

S2= k23(( 2 ) ((p 2 ,z,t 2 ) U(p 1 ,Z,601,tl) U*(P 2,z,0)2 ,t2 )) (38)

ik1 1 3 ik2j
= 4 A,(p 1-P2,t-t 2) F - 4 A (0,0) F

2.2.4 Second Form of Transport Equation.

The transport equation for the mutual coherence function is now given by
combining Equations 37 and 38 with 23 with the result

aF i V2 1 2] F (39)
az + 2 k, I k2V 12 (39)

8 [2kjk2 Pi32 A (pj-p 2 ,tN-t2 ) - (k2p2 + k2 02 ) A01 F = 0

where Ao = A (O,0).

The differential equation for F will be solved by first letting F equal FoF1 where
F0 is the free space solution to the transport equation. The well-known solution of the
wave equation for the electric field in free space (Eqn. 18 with 61 = 0) may be written
down directly. The Fresnel approximation that z >> p19 is then used to expand the
electric field and the free space solution Fo is computed. The quantity F0 contains the
1/z2 term that partly determines the mean power at the receiver. The next step is to
derive a differential equation for F1 from Equation 39 and the free space solution. It
is the mutual coherence function F1 that determines the second-order statistics of the
received signal.

2.2.4.1 Free Space Solution Fg. In free space and for spherical geometry, the
complex envelope of the electric field is

E = Eo e-(-iklr) (40)Irl

11



It is easy to verify that this is a solution of the wave equation with t'v set to zero.

Under the assumption of small-angle scattering, z2  x + y In the regon of interest
and Irl may be expanded as

22 2
I x 2 + y .+z2  +y (41

With this Fresnel approximation,

E Oexpl- ik z + (42)- z 2z )

After recalling that U = exp (ikz) E, the free space mutual coherence function is

F0  (LU(pl,z,m) ) U*(p 2,z. )2 ), (43)

I ikj(xI + y-j) ik,(x; + y',)
=Z exp 2z + 2z

2.2.4.2 Differential Equation for 1-1. After substituting F= 1,1 into the
transport equation and using Equation 43 for the free space solution, the equation for
Vi becomes

oz t + V 2l 1- V FI- 44)
2k 2 , I4Iz + 2 k 1 I1 - 2k~ 2 I

()l OF 1 x, ol- 1  y, f) F_
+ I YL + ..... + -> . SF 1  0L Z ax, z a-y, Z ox. Z a~ye_

where the source term is

S = [2kjk 231P, 2 A ,(p 1-p,t-t,) - (k-P2 + k ) ,A0j . (45)

In order for F1 to represent a statistically stationary random procc.s in space.
frequency, and time, F1 must be a function only of the differences an-d. (-'. and
tl-t 2 . It is therefore useful to transform Equation 44 to sum and difference spatial and
frequency coordinates:

S x +_X 2 ,

xI - x2 T= Yi -Y2

V., rX + y Va 0. + ,(: .10)
-- ()Y
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a2 02

kl-V~ +

ks = -- , kd =  k 1 -k,

After sone manipulations, the equation for F1 redu, as to

a!-1  2i kd (
- k- k1 -kdVd + - V -V s'Vd F, +  (47)

,)- 4 k - k-s

Xax + YI Y +  F+  (

The houndary condition for this i.quation is that F1 evaluated at z -zt must be
equal to unity independent of the other spatial coordinates. Also, the source term S

under most conditions is a function only of the difference coordinates. It will
therefore he assumed that F1 is independent of X and Y. However, the source term
will be a function of X and Y if the spatial extent of the scattering region is small as,
for example, in a barium cloud. The assumption that F, is independent of X and Y
then requires that the disturbed region in the ionosphere be large compared to the
region from which scattered signal energy is received.

The transport equation may he further reduced by noting that the l/z term, when
t is large. will be small compared to the other terms and may be neglected. The
transport equation for 1-1 then becomes

,)I' 2ikd , - s48)
4k2-kd 

V  1 - (48)

2.3 I)FITA-LAYER APPROXIMATION.

As an RF wave propagates through a thick, irregularly structured ionization
layer, the wave first suffers random phase perturbatiorn, due to random variations in
the index of refraction. As the wave propagates farther, diffractive effects introduce
fluctuations in amplitude as well as phase. If the standard deviation (T of the phase
fluctuations that are suffered by the wave is large, then the amplitude fluctuations are
,:haracterized by a Ravleigh probability distribution when the wave emerges from the
laver. The delta-layer approximation assumes that the phase and amplitude fluctuations
are imparted on the wave in an infinitesimally thin layer. This assumption is consistent
, ith the Mai kov assumption made in deriving the differential equation for the mutual
coherence function.

An arnilvtic solution for the two-position, two-frequency mutual coherence
function ha ,en obtained for plane wavcs by Sreenivasiah, Ishiimaru, and ttorg
19 ( f7 r a J thiCk )oniation laver. l-itiwcr 11979J extended this solution to tr at

,,Vherical -kaves. The analytic form of this solution is sufficiently complex, however,
that the F cevar, Fourier transforms required to co,,pute the (,PSD cannot he
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performed in closed form. The complex analytic form is simplified bv tile use of the
delta-layer approximation to obtain tractable expressions for the mutuai cohorence
function and the GPSD. Wittwer has evaluated the accuracy of the delta-layer
approximation as it affects the delay distribution of the received signal and has found
that the maximum error is small for transionospheric satellite communication link
geometries as long as the parameters of the GPSD are properly selectcd. 'ittwer
[19791 has derived expressions for the signal parameters of the GPSD that include the
effects of a thick scattering layer.

Now a relationship between the electron density fluctuations and the phase
variations imposed on the wave may be calculated. The differential phase change of
the wave along the propagation path . is

dD- = re ?, Ane(p,z,t) (49)

Under the assumption of small-angle scattering used to derive the differential equation
for 71, d/d i. is approximately equal to d/dz, and the total phase change of !he wave is

¢ = re. JAne(p,z,t) dz = reX(ne) f (p,z,t) dz , (50)

integrated through the ionization layer. The autocorrelation function of the phase
change is

= [reX(ne)] 2 J d z J dz' (,(p,z,t) (p',z',t))

= [rcX(ne)] 2 .f A,(p-p',t-t')dz '51)

= [reX(ne] 2 L8 A (p-p',t-t')

where L5 is the delta layer thickness. The Markov approximation (Eqn. 29) has been

used in evaluating the autocorrelation of . However, it is shown ,n Appendix A that
Equation 51 is valid as long as the scattering layer thickness is large compared to the
parallel decorrelation distance of the electron density fluctuations. The phase variance
imI arted on the wave is

4 = [reX(nc)] 2 L5 A0  (52)

The quantity A0 depends on the power spectrum of the electron density fluctuations in

the ionosphere. The value of AO for a three-dimensional K-4 in situ power spectrum
and for the delta-layer approximation is given in Appendix B.
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In general, only part of the total phase variance results in the Rayleig-h amplitude
fluctuations that are described by the GPSD. Wittwer [1979, 1980] calls this part the
Rayleigh phase variance. The rest of the total phase variance is associated with the
mean dispersive effects described by the exponential term of Equation 17. It is the
smaller-sized electron density fluctuations that result in diffractive effects and the
larger-sized fluctuations that result in dispersive effects. Wittwer [1982] describes how
the Rayleigh phase variance may be separated from the total phase variance. In the
developments that follow, the phase variance in Equation 52 will be assumed to be the
Rayleigh phase variance associated with diffractive effects and amplitude fluctuations.

2.4 FORMAL SOLUTION OF THE TRANSPORT EQUATION.

Before proceeding with the solution of the transport equation, it is convenient to
expand the source term S by making two non-restrictive assumptions. First, it will be
assumed that the RF frequencies of interest are large compared to tb" plasma
frequency. Second, it will be assumed that kd is much smaller than ks. The solution
obtained will then be valid for a small range of frequencies around ks and for
frequencies large compared to typical peak ionospheric plasma frequencies of a few
hundred MHz. With these assumptions, the source term becomes

S 4c4k2 [A (p,t) - A0] - 8c4k4 A0  (53)

where it is understood that p is a two-dimensional relative position vector in the -j
plane normal to the line-of-sight, and t is time difference.

The last term in the equation for S is a function of frequency and z but is
independent of C and ril. This suggests that another useful factorization is Fi = F 2F 3
where F 3 is independent of and r. After making this substitution in the transport
equation for 1-1 and separating variables, the result is

1 OF2 ikd Vdr 2 (0)2 1 ar 3  k(_
r z 2k r.ks"2 - 4c 4k [A (p,t)- A01 + - + 8c4k A = 0 . (54)

The last two terms of this equation depend only on the spatial variable z. Therefore
the sum of these two terms must be separately equal to zero for arbitrary values of the
other spatial variables and rl.

The source term in the F3 equation is only non-zero within the delta layer. Thus
from the transmitter to the delta layer, F 3 is unity. With this boundary condition, the
solution of the F3 equation is

F 3 = exp - p c 4kA (z-zt) ,z > zt • (55)

This term gives the effect of different transit times of different frequencies that results
from the frequency dependence of the index of refraction.
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Now the equation for F 2 may be solved using the delta-layer approximation.
The equation for F 2 is

V '12a p,t) Ao 0 . 562 " - 2

-2 aZ - 2ks F2  4c4 ks

Within the delta layer, the kd term is small compared to the source term and may be
ignored. This is equivalent to assuming that diffractive effects are not important
within the delta layer [Lee and Jokipii 1975b]. Integrating Equation 56 through the
delta layer gives the value of F2 at the point where the wave emerges from the delta
layer:

F 2 = exp IA (p~t) - A0] 1 (57)

The solution from this point proceeds as follows. Between the delta layer and
the receiver, the signal propagates in free space so the equation for F, is

aF , 2ikd 2
- -- - Vd F1  = 0 . (58)a~z 4k. _kd

The V FI term in this equation gives the effects of diffraction on the signal as it
propagates from the delta layer to the receiver. The boundary condition is F = F2= 3
at the point where the wave emerges from the delta layer. This equation is easily
solved by taking the Fourier transform from spatial coordinates and rj to angular
coordinates. First, it is convenient to transform variables to

U = and v = (59)z z

The angular variables Ku and Kv are then independent of z. After the change in
variables, the equation for F1 becomes

alFI ikd r'- 2

- 2kZ 2 aU2 + a F 1F = 0 . (60)

Fourier transform pairs from spatial coordinates p in the plane normal to the
line-of-sight to angular coordinates K1 , from carrier frequency differences o) to delay
T, and from time differences t to Doppler frequencies WD are defined in this report to
be
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00

F(K-L) f exp(-iKlp) F(p) dp (61 a)
-00O

FRT) = Jexp(icor) FUco) do)7 (61 b)
-CIO

-00

and

00

C A
F(w) = Jexp(-iKL ) FT)j d K_ (62b)

-CIO

0.0

t) A do)D
F(t) fJexP(-WDtF [((o) 2n (62c)

-00

A
Upon transforming from u and v to Ku and Kv, the equation for Fi1 is

!j kd (K+K) F, 0 (63)
-z 2 2 (U+ F

2Sz

This equation is integrated from z =t +j L8 to z = zt + Zr which gives

FI-(Ku,Kv,zt+zrjO,t) =E 1(Ku,Kv,zt+L,Co,t) exp [ kd(K2 + KV](64)

where

Zt+zr

f fd z - r Z - L 6 
( 5

(ZiZr(ZtL8

The expression for y may be simplified by setting L8 to zero, which is consistent with
the delta-layer approximation. Thus y is given by
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Zr

= zt(zt + Zr) (66)

At this point, a formal solution for the Fourier transform of the two-positiun,
two-frequency, two-time mutual coherence function at the receiver has been computed
in terms of the structure function A ,(p,t) - A0 . In the next two sections, models for
the temporal variation of the structure function and the quadratic approximation for
the spatial variation of this function will be discussed.

2.5 TEMPORAL VARIATION MODELS FOR Ane.

Under the frozen-in model, the temporal variation of the electron density
fluctuations is given by

Ane(p,z,t) = Ane(p-vt z,0) (67)

This equation is valid if the eiectron density fluctuations with a scale size L0 do not
appreciably change their shape within the time required for the structures to drift a
distance L0 . This is called Taylor's frozen-in hypothesis, and this model has been used
in most previous calculations of the mutual coherence function for RF propagation
through the ionosphere. Using this model, the structure function A becomes

A (p,t) = A (p-vt,O) . (68)

This model is accurate for ionospheric conditions where the ionization has broken up
into a single layer of striations aligned with the earth's magnetic field lines.

The frozen-in model may not be valid before striations have formed or when
there are multiple scattering layers in the line-of-sight. Under these conditions, a
"turbulent model" that decorrelates spatial and temporal variations may be more
appropriate.

Dr. Leon A. Wittwer of the Defense Nuclear Agency has recently proposed a
more "General Model" for the temporal and spatial behavior of the structure function
[Wittwer 1988]. In this model it is assumed that the stru.ure function depends on time
and space as p - Cvt, where C is the space-time correlation coefficient of the electron
density fluctuations. This model then varies smoothly between the frozen-in model
where C is unity and the turbulent model where C is zero.

2.6 QUADRATIC PHASE STRUCTURE APPROXIMATION.

As a practical matter, the quadratic phase structure approximation is required to
make the exponent in Equation 57 quadratic in the spatial and temporal variables. This
gives the resulting mutual coherence function a tractable mathematical form.
However, for the small angle, strong-scattering conditions considered in this report,
the correlation distance of the signal will be much smaller than the correlation distance
of the electron density fluctuations. The mutual coherence function will then be
determined primarily by the values of A,(p,t) - A0 at small values for the space and

18



time differences, and a Taylor series expansion of A (p,t) - A0, keeping only the
quadratic terms, will provide a reasonably accurate mutual coherence function.

First consider only the spatial dependence of the structure function, A (p). The
temporal behavior will be included later. The Taylor series expansion will make the
following calculations independent of the functional form of A (p) as long as the
-ec3 rd derivative of A4(p) exists for p equal to zero. A detailed discussion -f A,(p)
will therefore be deferred to Appendix B. However, some generic properties of A,(p)
need to be considered here in order to specify the functional form of the quadratic
terms in the Taylor series expansion.

A

The propagation coordinate systems are shown in Figure 2. The z axis is along
Athe line-of-sight and the t axis is aligned with the geomagnetic field lines B at the

• A A.

elevation of the delta layer. The r and s axes are in a plane normal to the magnetic
A A

field. The penetration angle (D is the angle between the z axis and the t axis. At theA

receiver, the x axis direction is given by the cross product of B and the line-of-sight
A A

unit vector, z, and the y direction is orthogonal to both X and z.

Now consider the functional form the power spectrum S(K) of the electron
density fluctuations in the r-s-t coordinate system. The power spectrum is usually
assumed to be a function of the quantity

2' 2 +L2 K2 +L2 K2
LrK r + LsK + tt

Line of Sight t

Penetration
AngleAg1' 

Geomagnetic Field
(D B

txZ
sin (D

Figure 2. Propagation coordinate systems.

19

! ! ii



where Lr , Ls, and Li are the scale sizes of the fluctuations in the three directions. The
usual assumption that the electron density fluctuations are elongated in the t direction
and are symmetric about the t direction will be made. The scale sizes are then

Lr = Ls = L0 (69)

L = q L,

where q (q > 1) is the axial ratio.

The power spectrum S-,(K) will now be evaluated in the x-y-z coordinate system
in order to calculate A,(p) in this system. The power spectrum in x-y-z coordinates is
a function of the quantity [Wittwer 19791

2 - 2 12 2

K2 + LK + L-K + 2LyzKyKz

where

Lx = LO

Ly = L0 cos2P + q2sin 2 1 (70)

L z = LO sin2 + q2cos 2 q)

Lyz = Lo (q2-1) sinI cosl.

The structure function Ar,(p) is the two-dimension Fourier transfom.- of the
power spectrum St:(K):

AJ(p) = exp (iKLp) S;(Kj,Kz=0) d2
1  (71)

Setting K, = 0 in this equation results in S,(K) being a function of
2 2 2

L2K" + LyKy

and the structure function being calculated in the plane of the delta layer (i.e. at z 0).
After the Fourier transform is performed, Ar(p) will be a function of the quantity

X2 V

The quadratic phase structure approximation then takes the form

A A,, A (72)
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The coefficient A2 is calculated in Appendix B for a K-4 electron density fluctuation
spectrum. The coefficient A0 is given in terms of the phase variance by Equation 52.

Under the general model, the temporal variation of the structure function is due
to a translation of the spatial coordinates. Equation 72 then becomes

A (pjt) = A0LI - A2 L2+ 2 + :2-2 2 LyT (73)

The quantity To can be thought of as a "decorrelation time" of the electron density
fluctuations in the ionosphere. The degree of space-time correlation is determined by
the coefficients Cxt and Cyt.

2.7 MUTUAL COHERENCE FUNCTION.

The boundary condition for the mutual coherence function 171 at the delta layer
is given by the product F 2F3. Using Equation 52 to relate A0 to the phase variance and
then setting the delta layer thickness L5 to zero gives the following for F2 and r3 at the
point where the wave emerges from the delta layer:

F2 2 2 t Wit --1-"2 = exp G A 2 ( 2 +2 t2  Cxtxt 2Cyt (74)
exL LAxi LY + i-LxT0o- LYT 0

and

r3 = exp ) (75)

where o = cks is the radian frequency of the carrier.

Upon changing variables in the equation for r2 to the dimensionless spatial
cooidinates u and v, performing the Fourier transform to Ku and K, coordinates, and

A
assuming that the delta layer thickness is zero, the boundary condition for F, is

- YA 2 2 2 42z (76)
A rrLxLy [ 2 CF j) L xK + 1 (76Fj(KuKvzt,ot) - a Az2 exp G A 2 2 - Z2 (76)3iA0 T 2co' 4aYiA~z

S2( 2t + 2 t 2 CxtLxKu + CytLyKv t l
x exp - oA 2(Cx, + C t - i

The solution at the plane of the receiver is given by Equation 64 and this boundary
condition.
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A
After performing the inverse Fourier transform on the solution FI(Ku,Kv,zt,co,t)

and converting to unnormalized distance units x and y, the two-position, two-
frequency, two-time mutual coherence function is

e xp L 2 (,to exp [- (1 - C t-C t) O TO
= 1,~mt 1

1+ i (jo-- x 1 + i A0yh2
0 Ohl I L coh- x 221i4j y

x exp - . A_ exp - + ioAx (77)

+ coh Okoh

where

Ax L4 A+= 4 + k4 2  (78)

The decorrelation distances ix and ly are given by the expressions:

ix (zt + zr)Lx = (zt + zr)L(

ztao TA 2  zto 2  7A2

the decorrelation time is given by the expression

TO - '(80)

and the coherence bandwidth Ocoh is given by the expression

L, AO)L zt + Zr (81)2coA 2  ZtZr

Under the delta-layer approximation, the ratio of the two decorrelation distances
is a function of only the penetration angle and the axial ratio and is given by

iL x = [cos 2 (I + q.in (82)

The orientation of the x and y axes is usually chosen so that ix is the smaller of the two
decorrelation distances. The minimum decorrelation distance is also referred to as to
in the literature. This notation will occasionally be used in this report. Equation 82 is
used to calculate ly when only the minimum decorrelation distance is specified.
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It will be seen in the next section that the coherence bandwidth is proportional to
2rf 0 where f0 is the frequency selective bandwidth of the signal. It is clear from the
form of the mutual coherence function in Equation 77 that the coherence bandwidth
could have also been defined by either of the products CWcohAy or (OcohAx. The
asymmetry factors Ax and Ay have been included in the definition of the coherence
bandwidth in order to simplify the relationship between (J0coh and f0.

The equations for the decorrelation time, decorrelation distance, and the
coherence bandwidth are only valid under the delta-layer approximation and do not
reflect how these parameters are actually calculated for a given ionospheric
disturbance. Wittwer [19791 has derived expressions for the decorrelation distance and
the coherence bandwidth that are valid for more general scattering layer geometries.
It is these more general expressions that are used in signal specifications to calculate
these signal parameters.

For satellite communications links, the distance from the ionosphere to the
satellite is typically much larger than the distance from the ionosphere to the ground.
If the transmitter is on the satellite then zt >> Zr and if the transmitter is on the ground
then zt << Zr . Because the expressions for the decorrelation distances are not
reciprocal in zt and zr, the values of I-x and .y depend on the direction of propagation.
However, the expression for the coherence bandwidth is reciprocal in zt and Zr so 0Wcoh
and the frequency selective bandwidth are independent of the propagation direction. It
is interesting to note that the expression for the decorrelation time is independent of the
propagation distance, depending only on the "decorrelation time" of the striations and
the standard deviation of the phase fluctuations.

The decorrelation distance of the signal as it emerges from the delta layer is
approximately equal to Ldto/. Under strong-scattering conditions where ao >> 1, this
distance will be much smaller than the electron density fluctuation scale size and the
quadratic phase structure approximation conditions are met. Conversely, under weak
scattering conditions where ao = 1, the quadratic phase approximation will give
inaccurate results for the mutual coherence function.

Now consider the mutual coherence function for two positions, one frequency
and two times:

['(xyot) = exp[-(1 - - Cit)C 2 4 x
-

x-Cxt -o) C t

(83)

The quantities .xy, and to are seen to be the l/e points of F1 (x,o,o,o),
F(O,y,0,O), and F1(0,0,0,t) respectively and are therefore consistent with the usual
definitions of decorrelation distance and time.
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2.8 GENERALIZED POWER SPECTRAL DENSITY.

The generalized power spectral density S(K1,TWD) of the signal incident on the
plane of the receiver is the Fourier transform of the mutual coherence function:

00 00 00

S(K,T,OD) = Jd 2p j Jdt F1 (p,,t) exp [-i(KI-p-0z-(0Dt)] (84)
-00 -00 -00

where angle-of-arrival K1 is the Fourier transform pair of position p in the x-y plane,
delay t is the Fourier transform pair of relative carrier frequency 0), and Doppler
frequency WD is the Fourier transform pair of relative time t. The quantity
S(K±,t,OD)(d2 KJ4 2 )dt(dOD/21t) is equal to the mean signal power arriving with
angles-of-arrival in the interval KL/41c2 to (KL+d 2Kj)/4r 2, with delays relative to a
nominal propagation time in the interval T to z+dT, and with Doppler frequencies in the
interval (OD/27t to (O)D+ d0)D)/21t. The delay dependence of the GPSD is a
consequence of the fact that some of the signal energy takes a dog-leg path through the
ionosphere from the transmitter to the receiver and arrives later than the signal energy
that propagates straight through the ionosphere.

In general, the GPSD can be written as the product of a Doppler spectrum
SD(COD) and an angle-delay spectrum SKE(K_L,T):

S(K±,T,OD) = SD(O)D) SKt(KI_,T) . (85)

After performing the integrals indicated in Equation 84, the Doppler spectrum for the
general model is

SD()DFo exp (ToOD - CxtKx "- CytKv kv)2(
SD(0.D) = I _ Cx2t - y 4(1-Cxt Cyt) . (86)

(General Model)

The angle-delay part of the GPSD for the general model is identical to that
derived previously for the frozen-in and turbulent models [see, for example, Dana
19861. In terms of the components of K1 (Kx and Ky) the angle-delay part of the
GPSD is

221
SKT(KxKyt) i L -]y (1X coh exp K x - 4

KAyK(K,+K,) 1
x eL - 2LcohT - 4

where the delay parameter ax is defined to be
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o = (88)
o700k-oh

The components of KI are related to the scattering angles 0, and Oy about the x and y
axis respectively by the relations

2 t sin(0x)
Kx = -n (89a)

21t sin(0 ) 8Ky = x.(89b)

It should be noted that the range of delay in Equation 87 is from -0- to +oo.
However, this delay is relative to some nominal propagation time, and the value of the
GPSD rapidly approaches zero for decreasing negative values of Ocoht. Thus negative
values of delay present no real problem with causality.

It is interesting to examine the limits of the general model Doppler spectrum in
order to show that this model does indeed encompass both the frozen-in and fully
turbulent models. These limits for the Doppler spectra are:

Limit
CXt 1 SD(COD) = 2Z to 5(ToD - K×x) (Frozen-in Model) (90)
Cyt -0

and

Limrnit
Cxt - 0 SD(O)D) = "f to exp L- 4  (Turbulent Model) (91)
Cy t 

40

For the frozen-in model, the delta-function relationship between Doppler frequency
and K, is what is obtained by assuming that the random diffraction pattern of the signal
is "frozen" and drifts in the x-direction past the receiver. For the turbulent model, the
Doppler spectrum is independent of Kx so the temporal and spatial variations in the
received signal are also independent. This Gaussian form is the true turbulent Doppler
spectrum, as opposed to previous turbulent models that assumed an o- Doppler
spectrum for mathematical convenience [Dana 19861.

The significance of the parameters ax, kx, k , and (Ocoh that appear in the angle-
delay part of the GPSD will be discussed in the next subsections.

2.8.1 Delay Spread and ox.

The distribution of delayed signal power with a fixed angle-of-arrival, which is
given by the sec(nd exponential term in Equation 87, has the Gaussian form
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S.C(t) = (O.coh r 0C!()coh (T - tp)2 (92)
-\2T exp- 2 9

where tp is the additional propagation time for signals arriving at the angles Kx and
KY. To see this, the expression for tp is expanded using the definitions for i-x, -y, and

(Ocoh and the assumption of small-angle scattering to give

x+ 02Y Zr(Zt + Zr) (93)
2c Zt

The geometry of the scattering in one plane is shown in Figure 3. Clearly, for small-
angle scattering, the angle 0t at the transmitter is related to the receiver scattering angle
Or by the relationship

0t=Zr
zt= r . (94)

The difference d between the line-of-sight distance and the scattered path length is
given by

o2

d = + Z + z - + + 0 Zr(Zt + Zr)r Or+ztZ t (95)

for scattering in one plane only. When scattering about both the x and y axes is taken
into account, the total path difference is given by Equation 95 with 02 replaced by

0 +0Y. The additional time required for the signal to propagate along the scattered
path is just d/c which is equal to tp.

Transmitter

Scattering
Layer

Zr

Receiver

Figure 3. Scattering geometry.
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For a given value of the coherence bandwidth, larger values of cz result in a
narrower delay distribution of signal power about the time tp. The delay parameter Ct
is then a measure of the relative importance of diffraction and dispersion with large
values of (x indicating strong-scattering effects and small values indicating weak
scattering or dispersive effects. The strong-scattering limit then requires that the value
of a be large.

2.8.2 Frequency Selective Bandwidth and 0)coh.

The frequency selective bandwidth f0 is an important measure of the effects of
scintillation on the propagation of wide bandwidth signals. This quantity is defind as
the standard deviation of the time-of-arrival jitter YT:

fo 1 1 (96)

where

= (T )
- (T) 2  (97)

These delay moments can be calculated directly from the angle-delay part of the GPSD
using the equation

= cT) .d 2K- 0 dT'T) (98)

0 n (2 t) 2 _ 00 (98)

It is easy to show that the mean signal power P0 is equal to unity. The first and second
moments are easily obtainable in closed form giving the relationship between
coherence bandwidth and the frequency selective bandwidth:

(0coh = 2 foI I + a2 99)

This expression is valid under the quadratic phase structure approximation for which
the GPSD is valid. Yeh and Liu [19771 have calculated an expression for the time
delay jitter keeping both the second and forth order terms in the expansion of the
structure function A (p). Their result has more terms in the expression for the time
delay jitter. However, the additional terms are significant only when the quadratic
approximation for the structure function is invalid ana therefore only when the GPSD
derived above is also invalid.

The 1+1/a 2 term in the expression for the coherence bandwidth represents the
relative contributions to the time delay jitter from diffraction (1) and dispersion
(1/aX2 ). In the limit that ac is large, the time delay jitter is determined by diffractive
effects alone which should be the case under strong-scattering conditions.
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2.8.3 Angie-of-Arrival Fluctuations and Ix and ty.

A key parameter in determining the severity of antenna filtering effects is the
standard deviation of the angle-of-arrial fluctuaiions (T0 of the electric field incident
on an antenna. It is clear that for anisotropic scattering, when ix and .y are unequal,
the values of cT0 for s, "ttering about the x and y axes will differ. The variance of the
angle-of-arrival fluctuations about the x-direction is equal to

CIdO 1) '2(1X

- Jd7 -L SK(K,)
-00 0

under the small-angle scattering approximation that is required for the GPSD to be
valid. A similar expression holds for the angle-of-arrival variance about the y-
direction. The stardard deviations of the angle-of-arrival fluctuations about the x and
v axes are then gi,,en bv

0 101a)

(0, - - . (101b)

For small-angle scattering to be a valid assumption, the larger of the two angular
standard deviations must be small relative to one radian. Thus the minimum
decorrelation distance must be approximately equal to or greater than the RF
wavelength ,.. The small angle approximation has been used throughout the derivation
,)f the GPSD, starting with the parabolic wave equation. The resulting expression for
the GPSD, however, does not exhibit singular behavior when the angle-of-arrival
tluctuations become large and thus the small angle approximation is quite robust.

2.8.4 Isotropic Examples.

When the penetration angle is zero the two decorrelation distances are equal ( .x
- = k-o) and the scattering is isotropic about the line-of-sight. The one-dimensional

angle-delay generalized power spectral density is then given by

00dK
SK(K,t) = J SK-(Kx=K,KyIt) Illy (102;

-00D

2 (Ocoh io exp C coh I F + -. Kcoh
L'2u ,'2 4

where Witt"wer's F function is defined as
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Fz) = exp (-z) exp (-t4 -2tz) dt )3
CO

1,'ittiver 119801 has developed a polynomial expansion for this integral that is accurate
to within one percent. This function may also be written in terms of K1 /14 and 11/.1
Bessel functions.

A three-dimensional plot of the isotropic one-dimension angle-delay GPSD is
shown in Figure 4. This plot shows the mean received power as a function of
normalized angle K%. and normalized delay Ocoht. The vertical axis is linear with
arbitrary units. The value of cc is 4 for this figure so consequently the quantity 0)coh is
essentially equal to 2ifo.

It can be seen that the power arriving at large angles is also the power arriving
at long delays. The power arriving at long delays thus has higher spatial frequency
components than power arriving at short delays. When there is strong space-time

:orrelation (i.e. when "C't + C', is approximately equal to unity) these higher spatial
requency components correspond to higher Doppler frequency components. The
ignal arriving at long delays then varies more rapidly in time than the signal arriving
t short delays.

- -

Figure 4. Angle-delay generalized power spectral density.
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Another view of the GPSD can be obtained by considering the delay-Doppler
scattering function

0IO 00

StD(t,O)D) = d $ di 2 S(Kx,Ky,It,OD) (104a)

-CO -CO

For both the frozen-in and turbulent models the scattering function is readily evaluated
for isotropic scattering with the results: [~ 2;

2__ [a C(oh]+ DTO
S=D(TWD) C (Occhto ex0c .F ____ + - - j)coht

(Frozen-in Model) (104b)

StD(t,JD) = n To exp[- (0 D (Ocoh exp erfc K(OcohT]
(Turbulent Model) (104c)

where erfc (.) is the complementary error function. It is clear from the form of
Equation 104c that the turbulent model scattering function is separable into a function
of Doppler frequency times a function of delay. This is not the case for the frozen-in
model.

For the general model the scattering function can be written in the form

a II

SrD(T,OD) = -f (1 C2t) 2 Ocohto exp[ 2 2- cOcohT (104d)

00

x o exp -t 4(1 - Ccxtc) F 1 + 4 -Ocoh t' 2n
L 4(1-_ C2') j LJc

-00

(General Model)

assuming that Cyt is zero. The remaining integral in Equation 104d is easily evaluated
numerically.

A comparison of the scattering functions for the frozen-in and turbulent models
is shown in Figure 5. The frozen-in scattering function is just a reproduction of
Figure 4 with normalized angle K % replaced with normalized Doppler frequency
ToOD. This is a consequence of the delta-function relationship between angle and
Doppler frequency for the frozen-in model. For this model the signal at long delays
has correspondingly large Doppler shifts, and a wing-like structure is seen in the
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scattering function. The turbulent model scattering function does not exhibit these
Doppler wings because the Doppler spectrum is the same at all delays.

Both functions have exactly the same power density at each delay. The
difterence in appearance of the figures is due to the fact that the turbulent model signal
at long delay is more spread out in Doppler frequency and is therefore less obvious.

A progression of scattering functions for the general model is shown in Figure
6. The space-time correlation coefficient Cxt varies from 0.99 for the scattering
function in the upper left to 0.7 for the scattering function in the lower right. The
scattering function for Cxt equal to 0.99 is essentially identical to that for the frozen-in
model, and the scattering function for Cxt equal to 0.7 is essentially identical to that for
the turbulent model. For intermediate values of Cxt, the scattering functions still
exhibit Doppler wings but the wings have broader Doppler spectra as Cxt decreases.

2.8.5 Diffraction Limited Form of the GPSD.

Under the strong-scattering conditions in the ionosphere that cause signal
scintillation at radio frequencies, diffractive effects dominate dispersive effects. In this
case the value of x in the GPSD is large. In the limit that cx approaches infinity, the
angle-delay part of the GPSD becomes

22 2 2K

SK-t(Kx,Ky,t) = 7t9xty (koh exp [ K4 x

Y(K 2 2 -

4 (105)

The range of delay in this equation is from 0 to +- due to the fact that the second term
in the delta function is positive.

This geometric optics limit results in a delta-function relationship between angle
and delay. The delta function in this equation can be used to associate the signal with a
particular angle-of-arrival to a specific delay. This association is used to develop
efficient channel simulation techniques.

2.8.6 Orthogonalized Form of the GPSD Used in Channel Modelling.

Once the diffraction limit of the GPSD has been taken, the delta-function

relationship in Equation 104 can be used to relate angles-of-arrival to delay. The
GPSD used in channel modelling can then be integrated over delay producing an
angular-Doppler form, denoted SKD. After some rearrangement of terms this form of
the GPSD is
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SKD(Kx,Ky,(OD) = f S(Kx,Ky,T,COD) dT (106)
0

7t3/2 I x - e 006

Fl C" - C t (e p  -4

+~~~" -K c o -c0
exp~ -4(1 - Ct- Cit)

" 2 CxtCyt (Kx i-x - CxtTOCOD) (Ky Iy - Cyt'0OD)]
xexp -4(1 - c2t- C)

This form of the GPSD shows that, aside from the leading exponential factor, the effect
of Doppler frequency is to shift the GPSD in Kx-Ky space. Thus it is possible to
evaluate Equation 106 for zero Doppler frequency and then to shift the zero point of
Kx-Ky coordinate system to obtain the GPSD for non-zero Doppler frequencies.

Equation 106 does present a problem due to its Kx-Ky cross term. This term
makes the evaluation of the signal power in each Kx-Ky grid cell computationally
difficult and therefore time consuming. Of course a simple rotation can be used to
eliminate this term. Thus consider a ne., coordinate system, Kp-Kq, where

Kp = Kx cosi5 + Ky sini (107)

Kq = -Kx sinit + Ky cost.

The rotation angle t between the Kx-Ky and Kp-Kq coordinate system is chosen to
eliminate the Kp-Kq cross term. This choice results in the following expression for the
tangent of the rotation angle:

2CxtCyt ix Qly
tan (20) = 12(1 Cxt) "  ( x C y (108)

C2 -2 (1 _ C2)

After a little algebra it can be shown that the angular-Doppler GPSD in the
Kp-Kq coordinate system is

SKD(Kp,Kq,OD) = exp -4 (109)

X ~ E 'x (Kp ip - CptToi)D D)21 <_9.g xp(K g - CgqtTCOD )2-

S/1 te - 4(1 Clt) j 1- C p  4(l - C't)

when the following definitions are used:
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1 cos 21± sin20
2+

f sin cos2  (1 Ob)

Ct cos Cxt sin Cyt(la)
.p i .x + y

- - sini5 Cxt cosO C t ( Ib)i.q k.x  + y (lb

Two key features of the channel modelling technique developed for the general
model are the evaluation of the signal power in this rotated coordinate system using
simple error functions, and the use of the Doppler shifting property of the GPSD.

2.9 IMPULSE RESPONSE FUNCTION AND ANTENNA EFFECTS.

The channel impulse response function of the signal incident on the plane of the
receiver and the impulse response function of the signal at the output of an aperture
antenna will be discussed in this subsection.

2.9.1 Channel Impulse Response function.

Consider a solution U(p,co,t) to the parabolic wave equation in the plane of the
receiver. The dependence of U on propagation distance z has been suppressed because
subsequently we will always consider U in the plane of the receiving aperture. The
parabolic wave equation solution represents the random effects due to the fluctuating
ionosphere on the incident electric field at position p and time t from a transmitted
monochromatic wave with angular frequency (o. The channel impulse response
function of the signal in the receiver plane is [Knepp and Wittwer 1984]

00

h(p,t,t) = U(p,o)+o 0 ,t) exp [i(0T(o)) + i do (112)

-00

where (OT(o))) is the dispersive contribution to the impulse response function resulting
from the total electron content (TEC). The impulse response function h(pt,t) is
defined to be the received signal at time t + t and position p from a transmitted
impulse at time t minus the nominal propagation time (the nominal propagation time is
usually set equal to zero).

The term exp [i(OT()))1 in Equation 112 is the transfer function of a smooth
ionized plasma and is equal to the exponential term in Equation 17. Thus the smooth
plasma transfer function is
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Zr (~,(ZyZrZrr

(0T(O )) = f (k(z)) dz -1 ( ( 2z (

-
" fW2 dz (113)

-ZZt

Because the smooth plasma or dispersive effects represented by expli(OT(o))] and the
fluctuating plasma effects represented by U(P,zr,Ot,t) appear as the product, it is
possible to separately consider these two effects. The dispersive effects will be
considered in the next subsection.

If the transmitted signal is a modulated waveform mt(t), then the signal complex
voltage incident on the plane of the receiver is the convolution of the transmitted
modulation and the channel impulse response function:

00

u(p,t) f mt(t-x) h(p,'rt-r) d'r (114)
-CO

It is clear from the form of this equation that received signal at time t and delay t
corresponds to transmitted modulation at time t - T. The third argument of h in the
equation is t - T because modulation transmitted at earlier times transits the channel at
earlier times. It is generally assumed that the channel varies slowly in time relative to
the delay spread of the signal, and h(p,Tt-T) is set equal to h(p,T,t) in Equation 114.
This is strictly true only if the product f0T0 is large. However, the product f0z0 will
generally be large under conditions where RF signals can propagate through the
ionosphere.

If the delay spread of the impulse response function is larger than the modulation
period of m(t), then the convolution in Equation 114 will encompass multiple
modulation periods. As a result the received signal will contain information from
multiple modulation periods. In communications systems this phenomenon is referred
to as intersymbol interference.

2.9.2 Dispersive Effects.

When the dispersive term (OT(wO)) is expanded in a Taylor series about the
carrier radian frequency the result is

(OT())) = (OT(0)) - (0O-cO0 ) (0T((Oo)) + 2 (O+"(O)O)) + (115)

where the first three coefficients in the expansion are
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Zr

(T(o))=- - dz ( 16a)c L)

Zr

((00°)) 1- dz ( 16b)

-Zt

Zr

1(0 O(z)) c 1 2 dz (I16c)
f O L 0 11c

-Zt

These equations may be expanded using the assumption that the carrier frequency is
much larger than the plasma frequency with the results:

(OT(0(o)) - -2rR + rNT (117a)
k

R X2reNT
(0T(0)0)) c + 2ntc (117b)

(0T(wo)) - X2reNT (117c)

27r2C2

where the free space range R and total electron content NT are given by

R = zt + Zr (118)

and

Zr

NT = f(ne(z)) dz (119)
-Zt

The first terms in Equations 1 17a and 117b are simply the free space phase shift and
propagation time which are proportional to the line-of-sight distance R. The terms
proportional to NT in Equations 117 represent the phase shift, group delay and
dispersion due to the mean ionization.
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The Doppler shift fD of the incident signal due to range and TEC dynamics is

I d(OT(0o)) I dR Xre dNT
27 dt .dt +  dt (120)

Note that increasing TEC (positive dNT/dt) increases both the propagation time and the
Doppler shift whereas increasing R (positive dR/dt) increases the propagation time but
decreases the Doppler shift.

2.9.3 Antenna Aperture Effects.

The voltage at the output of an aperture antenna is the spatial convolution of the
incident voltage and the aperture weighting function, A(p). The received voltage for
an antenna located at Po and pointing in the Ko direction is given by

00

UA(Po,0,t) = .f U(p,w,t) A(p 0 -p) exp [iK0(p0-p)] d 2p (121)
-00

where the subscript A denotes the voltage at the output of the antenna. The z
dependence of UA has been suppressed because it is understood that this voltage is at
the plane of the receiver. It is assumed that the aperture weighting funcuon, is
independent of frequency. This is generally true for a range of frequencies about the
carrier frequency that is larger than the signal bandwidth.

In order to relate the GPSD of UA to the GPSD of the incident signal, the two-
position, two-frequency, two-time mutual coherence function of UA is required. The
mutual coherence function of the signal out of the antenna is

FA(p,cO,t) = (UA(PI,oi,tj)UA(P 2,0)2 ,t2)) (122)

00 00

= J d 2 p' f d2 p ' (U(p',w'01 ,t1 )U*(P",0o2 ,t 2 ))
-00 -00

X A(p'-p1 )A*(p"-p 2) exp [iK 0.(p1 - P' - P2 + P")]

For statistically stationary processes the expectation of UAUA must be a function only
of the differences p = p, - P2, (0 = (0 - (02, and t = t1 - t2, and the expectation of UU*
in the integrand must be a function only of the differences p' - p", co, and t.

The aperture weighting function can be written in terms of the voltage beam
pattern g(K±) using the Fourier transform relationship

00 d2 K

A(p) = Jg(K±) exp (iK±.p) (2n)2 (123)
-00
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Upon substituting this equation for both aperture weighting functions in the expression
for the mutual coherence function, changing variables from p' to r = p' - p", and
changing the order of integration, Equation 122 becomes

00

FA(p,co,t) = exp (iK0 .p) [ d2r F(r,o),t) exp (-iK 0 -r) (124)
-CO

00 d2K' d2

x f(2)2 g(K') exp [iK'.(p1 - r)] f 2 g*(K") exp (-IK"P 2)
_ (27r) (27r)' *( ")e

00

x f d2p " exp [i(K" - K').p"]
-00

The last integral in this expression is equal to (27) 2 5(K"-K'), and the K" integral may

be performed directly. Another change in the order of integration yields

00 d2K
FA(p,wo,t) = exp (iK0.p) f ' G(K') exp (iK'.p) (125)

-00O

00

x .f d2r ['(r ,co,t) exp [-i(K' + KO).r.

The quantity

G(K) = g(K)g*(K) (126)

is the power beam pattern of the antenna.

The mutual coherence function E(r,o,t) of the signal incident on the plane of the
antenna that appears in the second integral of Equation 125 is the product of the free
space term F0 (Eqn. 43) and the stochastic term 1 . The free space term may be pulled
out of the second integral if it is assumed not to vary over the face of the antenna. This
is equivalent to assuming that any deviations from a plane wave in the incident signal
are due to scattering effects in the ionosphere and are not due to geometrical effects.
After the free space term is pulled out of the integral, FA may be assumed to represent
only the stochastic fluctuations of the received signal.

Now the GPSD of the signal out of the antenna can be computed by taking the
appropriate Fourier transforms (see Equation 84) from p, o, and t to K 1 , T, and COD

respectively. After performing the co to "T and t to OD transforms and rearranging
terms, the GPSD at the antenna output is
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00 d2K 00
SA(KItCD) = ( G(K) J d2 r F(r,t,0D) exp [-i(K'+Ko).r]

-00 -00

00

x Jd2p exp [i(K'-K±+Ko)-p (127)
-00

The last integral in this equation is just (2it) 2 8(K'-K1 +Ko). Using this delta function

to perform the K' integral results in:

SA(KItO0D) = G(K 1 -K0 ) Jd2r (r,toD) exp (-iKl.r) (128)

-0O

where the remaining integral in this expression is just S(K±,z,C0D). The GPSD of the

signal out of the antenna is then

SA(KL,Z,OD) = G(K 1 -K0 ) S(K±,,(OD) 129)

As expected, the effect of an antenna is to modify the incident power as a
function of angle. This result will be used throughout the rest of this report.

The effect of antenna filtering is illustrated in Figure 7 which shows four plots
of the GPSD at the outputs of four uniformly-weighted circular antennas (with
diameter D) for isotropic scattering (. = = to). The antennas in this example are

all pointed along the line-of-sight. The plot in the upper left is the same as in Figure 4

and is for a point antenna (D << .o), for which there is no antenna filtering. The

other three plots in the figure are for cases where the ratio of the antenna diameter to

the decorrelation distance is equal to 1, 2, and 4. As the antenna size increases for a
given value of i- or, equivalently, as the decorrelation distance decreases for a given

antenna diameter, more of the incident signal with large angles-of-arrival is filtered
out of the received signal. The effect of this on the mean received power, frequency
selective bandwidth, and decorrelation time of the signal out of the antenna will be

discussed next.
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SECTION 3
ANTENNA FILTERING EFFECTS

An antenna beam pattern acts as an angular filter of the received signal power.
Because of this, the mean power, decorrelation time, and frequency selective
bandwidth of the signal at the output of an antenna are different than those of the
incident signal. The reduction in mean power is a direct consequence of the attenuation
of the signal arriving outside of the main beam of the antenna. If the antenna is
pointed alorg the line-of-sight, the signal that is attenuated by the antenna is that with
large angles-of-arrival and hence large times-of-arrival. Thus the effect of ai. antenna
pointed along the line-of-sight is to reduce the delay spread of the signal. When the
same antenna is pointed away from the line-of-sight, however, its effect on the delay
spread of the output signal can be quite different, as will be shown in this section.

Depending on the values of the correlation coefficients Cxt and Cyt, the antenna
may also filter the decorrelation time. In the fully turbulent case, the signal at all
angles-of-arrival has the same effective decorrelation time, and hence an antenna has
no effect on the decorrelation time of the output signal. However in the frozen-in case
the effective decorrelation time of the signal varies with angle-of-arrival, and an
antenna can strongly filter the decorrelation time. This filtering results in a signal that
is more slowly varying at the antenna output than it is on the face of the antenna.

The effects of aperture antennas with arbitrary beamwidths and pointing angles
will be considered in this section. The antenna beam patterns for uniformly-weighted
circular or rectangular apertures and for Gaussian apertures are described in Section
3.1. Then the filtering equations for mean power, spatial and temporal decorreltion
properties, and frequency selective bandwidth of the signal out of a Gaussian antenna
with arbitrary beamwidths and pointing angles are given in Section 3.2. Many of these
results have been derived previously by Frasier [1988] and are just reproduced here.

An example is given in Section 3.3. Here the antenna is assumed to be circular
with uniform weighting, and the scattering is assumed to be isotropic (9 , = y = 9.).

The filtering equations for this case are plotted versus the ratio of the antenna diameter
to the decorrelation distance for a range of pointing angles. This example illustrates
most of the important effects of antenna filtering.

3.1 ANTENNA DESCRIPTIONS.

The coordinate systems for the propagation and the antenna are shown in Figure
8. The z axis is along the line-of-sight, and it is assumed that the face of the antenna is
in the x-y plane. Note that for a receiving antenna we have reversed the direction of
the z axis in the figure from pointing in the direction of propagation to pointing back
toward the transmitter. This is done because it is usual for antenna coordinate systems
to point out of rather than into an aperture. The beam of the antenna in the figure is
pointed away from the line-of-sight in the direction Ko defined by a pointing direction
elevation angle 8o (measured from the z axis) and an azimuth angle (o (measured

A A

from the u axis). The rotation angle ' is the angle between the scattering x axis and
A

the antenna u axis.
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Figure 8. Propagation and antenna coordinate systems.

The antenna u-v) coordinate system, where v' is in the x-y plane and isA

orthogonal to u , is chosen for convenience in describing the antenna beam pattern. ForA A

example, if the antenna is rectangular, the (u-v) axes should be aligned with the sides of
the aperture. It is assumed that the antenna beam pattern is separable in u-v)
coordinates. Thus the two-dimensional beam pattern G(Ou,Ov) is approximated by the
product G(Ou)G(Ov) where Ou and 0, are angles about the u and v axes respectively. In

A
many cases the u axis will be parallel to the local earth tangent plane.

In general the face of the antenna will not lie in the x-y plane. However for
satellite communications links it is usual for the satellite position to be known
accurately through ephemeris data and for an antenna to be dedicated to a single link.
Thus it is likely that the angle between the antenna boresight direction and the line-of-
sight will be small, and the cosine squared effects of this angle may be ignored. If
these angles are not small, then in the developments that follow the antenna size is the
projection onto the x-y plane and the antenna bearnwidths must include the effects of
beam broadening as the beam is pointed away from horesight.
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3.1.1 Gaussian Beam Profiles.

The antenna beam pattern is assumed to be separable in the u-v coordinate
system. The Gaussian antenna beam pattern is then

G(Ku,Kv) = exp [- O2(Ku-Kou) 2 - c42(Kv-Kov) 2] (130)

where Kou and KO, are components of the pointing vector. The peak gain G(0,0) in
this equation has been set to unity because this value is usually included in the
calculation of the mean received power. The components of the pointing vector in the
u-v plane, Kou and Kov, are:

Kou - sineo cos o  (131a)

2 7c
Kov = ' sinE0 sin (Do  (131 b)

For either the u or the v direction, the antenna beam pattern for pointing along
the line-of-sight can also be written as

G(0) = exp - In2 0 (132)

where 0o is the 3-dB beamwidth (i.e., full width at half maximum). Equating the two
patterns gives

c2 -= 2  (133)

where 0ou is the 3-dB beamwidth in the u-direction. A similar expression holds for ov
which relates this parameter to the 3-dB beamwidth in the v-direction, 0o,

3.1.2 Uniformly Weighted Circular Apertures.

For a uniformly-weighted circular aperture, the aperture weighting function is

I if ipI < D

A(p) a 2(134)
0 otherwise

where D is the diameter of the circular aperture. The value of a is chosen so that the
peak antenna gain is unity. The voltage antenna gain pattern g(KI) is related to the
aperture distribution function by the Fourier transform
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00

g(K-) = J exp (-iK±.p) A(p) d 2p (135)
-00

With p confined to the plane of the aperture, the dot product K1 .p is

K-.p = kr sin 0 sin 9 (136)

where 0 is the angle from the normal to the aperture, (p is the azimuth angle, k = 2rt/X,
and r = 1pl. The Fourier transform then becomes

D/2

g(1) f dr r J dp exp (-ikr sin 0 sin (p) (137)a 0 -71

Performing the indicated integrals results in the well known form for the power beam
pattern

G(0) = g(0)g*(0)= 4J, [t(D/X)sin0] (138)
[nT(D/AX)sin0l 2

where J, is the Bessel function, and where G(0) = 1 when the value of a is chosen to be
the area of the aperture, 7tD 2/4.

The 3-dB (full width at half maximum) beamwidth [i.e. G(00/2) = 1/2] is given
by solving the equation

4j2(x)
x2  2 (139)

with the result x = 1.616340. Assuming that the beamwidth is small so sin(00/2)
0/2, the beamwidth in terms of the diameter D is

00 = 1.02899 X radians . (140)

If the uniformly-weighted circular antenna beam pattern is approximated by a Gaussian
pattern with the same 3-dB beamwidth, then the a coefficients that appear in Equation
129 are

2 = U2 - (ln2)D 2

U v (1.02899t)2  (141)
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3.1.3 Uniformly Weighted Rectangular Apertures.

For uniformly-weighted rectangular apertures, the aperture weighting function
is

I if Jul< !! uand Iv[< :: T

A(u,v) = 2 2 (142)

0 otherwise

where Du and Dv are the lengths of the aperture in the u and v directions respectively.

In this case, the Fourier transform indicated in Equation 135 gives the result

G(Ou,Ov) = G(Ou) G(Ov) (143)

where G(Ou) has the familiar sin 2(x)x 2 form:

sin 2 [it(Du/X)sin0] (144)
G(u) = [tr(Du/X)sinu 12

A similar expression holds for G(Ov). The normalization a of the aperture weighting
function is just the area DUD, of the rectangular antenna. The 3-dB beamwidth is given
by solving the equation

sin 2(x)_ 1 (145)
X2 -2

with the result x = 1.391557. The u and v beamwidths in terms of the antenna sizes Du
and Dv are then given by

0ou = 0.885893 X 00v - 0.885893 X (radians) (146)

assuming that sin(0o/2) = 0o/2. If this beam pattern is approximated by a Gaussian
pattern with the same 3-dB beamwidth, the cc coefficients that appear in Equation 130
are

2 (ln2)D 2
2 _ (ln2)DU 2 n)D (147)o.u = (0.885893it) 2  v= (0.885893t) 2

3.2 FILTERING EQUATIONS.

The filtering equations relate the statistics of the signal at the outputs of one or
more antennas to the statistics of the signal incident on the antennas. The statistics that
are considered in this section are the mean power, frequency selective bandwidth,
decorrelation distances, and decorrelation time of the signal out of an antenna and the
cross correlation of the signals out of two separate antennas. Gaussian beam patterns
will be assumed for mathematical convenience. An elegant derivation of most of the
equations given in this section may be found in Frasier [1988].

47



The severity of the filtering effects is determined by the relative size of the
standard deviation of the angle-of-arrival fluctuations (o and the antenna beamwidths.

When ao is small compared to the antenna beamwidths, the signal arrives essentially at
the peak of the beam pattern, if the pointing error is small, and the filtering effects are
small. However, if o is large compared to the beamwidths, much of the signal arrives
at angles outside of the main lobe of the antenna beam pattern and the filtering effects
are large. Equivalently, large values of the ratio o0/00 correspond to situations where
the decorrelation distance of the incident signal is small compared to the antenna size
and the incident electric field as seen by the aperture is no longer a plane wave. In this
situation, the induced voltages across the face of the aperture do not add coherently
when summed together by the antenna with a loss in signal power as a result.

In the next subsections, expressions will be presented for the mean power,
frequency selective bandwidth, decorrelation time, and decorrelation distances of the
signal at the output of an antenna. Clearly the numerical value of these quantities must
be independent of the choice of coordinate systems (e.g., x-y or u-v coordinates) and
Frasier [1988] has derived expression for these quantities which are coordinate-system
independent. However evaluation of the filtering cquations requires a choice of
coordinate systems, and the x-y systems will be used here.

Before presenting the filtering equations, it is convenient to define some

quantities that are common to all these equations:

2
Ul+ 2 4cLv 2 (48

Qx 1 9.- xcos~qP+ 9.-xsinh (148)

Q =1+ --ysinPh+ -- cos2'1- (149)

2 2
Qxy= (XI .y cos' sin'" (150)

Qo = QQ yQ2 y (151)

The components of the pointing vector in the x-y coordinate system are also required
and are obtained from their form in the u-v coordinate system (Eqn. 131) using a
simple rotation:

2rt
Kox = 2 sin@0 cos (0 0+T) (152a)

2it
Koy= sin@0 sin (00+k) (152b)

48



3.2.1 Scattering Loss.

The mean power of the signal out of an antenna is calculated using the
expression:

00 d 2K _ 0 00 ( O D

PA = f (2 7r)2 f dTj f 2n-G(KL- K) S(KL,T,0OD) (153)
-00 -00

which gives the result

1 QyK 0xi-x Ko'J QXox iPA = QoI I - 4Q 2Q2 KIxxKoyy

(154)

The first term in this equation, 1/QO, is just the mean received power when the antenna
is pointed along the line-of-sight.

In the limit that both decorrelation distances are large relative to the size of the
antenna only the exponential term in the expression for PA differs from unity, and the
expression for the mean received power reduces to

Limit
x 00 PA = exp cCUKOU + (K ) (155)

-Y 00

which is equal to the antenna beam gain in the direction of the line-of-sight.

The scattering loss of the antenna in decibels is

LS (dB) = -10 log0 (PA) • (156)

This loss therefore includes both the loss in the mean received power due to
scintillation and the loss due to the fact that the antenna may be pointed away from the
line-of-sight.

3.2.2 Frequency Selective Bandwidth.

The frequency selective bandwidth is defined in Section 2.8.2 in terms of the
time delay jitter of the signal. At the output of an antenna, these moments are given by

wd2 00 00

PA(tn) = _f )2 f, d'Tn -n _ G(K_- K0 ) S(KI,t,OD) . (157)

Straightforward evaluation of the indicated integrals for n equal to I and 2 is indeed a
formidable algebraic task. However Frasier [1988] gives surprisingly simple-
appearing expressions for aT and the antenna-filtered value of the frequency selective
bandwidth, fA, which are independent of the choice of the coordinate system. In terms
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of the notation used in this report, the expression for fA is somewhat more complicated
and is

4 41

2 2 2

fA X Y (
fo 2 2 2 2 1 (158)

L'q 2;-
x 'x + __ 2Q2y + Pl

where the term P gives the effects of antenna pointing. This pointing angle term may
be written as:

2 j + 22 2

P = KoX X yKOy +PxyK xixKoyy (159)

where
Qy 2 2 2 2 t2

Px 2Qy(l-Qx) + Q 2(QQY) 2 +" (160a)XQ0h. Q22

Qx192-(Q2-Qx)
2  2 2P =2Q2y(1-Qy) + z X 0 (160b)

PQy ~ 2X0Q2 (I6b

U ~ ~~Q X 1.(Q2_Qx) Qy1 2(Qy

Pxy = Qxy4(Qx'I)(I'QY) - Qxy + Q+I. + Q 12. (160c)

3.2.3 Decorrelation Time.

The temporal coherence function of the signal out of an antenna is given by

00dIL~j r ,dWD
PAFA(t) = _J (2  2 JdT J 2 -w exp (-iO)Dt) SA(Kx,Ky,T,wD) . (161)

In general, the temporal coherence function is complex when the pointing angle is non-
zero because antenna pointing results in a mean Doppler shift of the output signal. The
antenna-filtered decorrelation time TA is then calculated by finding the l/e point of
IFA(t)I with the result

TA
_o = 1 - C2- t + CXtQy+ CYtQX - 2CxtCytQxyj2 (162)

In the turbulent limit (i.e., Cxt = 0 and Cyt = 0),

TA
TO = I (Turbulent Model) (163)
to
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and in the frozen-in limit (i.e., Cxt = 1 and Cyt = 0)

TA = Q0 (Frozen-in Model) (164)

It is interesting to note that the antenna-filtered decorrelation time is not
explicitly dependent on pointing angle, but does depend on the ratio of the antenna
beamwidth and the standard deviation of the angular scattering through the Q factors.
Of course as a phased array antenna beam is scanned away from boresight, the
effective aperture size will decrease thereby broadening the beamwidth and implicitly
changing the value of the filtered decorrelation time.

The mean Doppler shift W0A due to antenna pointing is

[Cxt(Q1o-Qy)-CytQxy]Kox I.X-_ [Cyt(Q2-Qx)-CxtQxy]K0Xy 
(OA -2 (165)

This quantity is clearly equal to zero for the turbulent model. For non-zero values of
the space-time correlation coefficients, the mean Doppler shift is proportional to the
components of the pointing vector.

3.2.4 Decorrelation Distances.

The x-direction decorrelation distance of the signal out of the antenna is given by
the l/e point of FA(X) where

PAFA(x) = .dK_2yt f' dc " 4K exp(iKxx) SA(Kx,Ky,T,COD) . (166)
-00 -00 -00 -00

A similar expression holds for FA(y). These two expression give the following results
for the decorrelation distances 9-Ax and D.Ay of the signal at the antenna output:

.Ax _ Q0
Ix  - Qy (167)

9Ay Q0 (168)

The interpretation of these quantities is that -Ax and -Ay are the distances in the
x- or y-direction respectively that the antenna must be instantaneously displaced in
order for the normalized cross correlation of the output signal to have a value of l/e.
As was the case for the antenna-filtered decorrelation time, these quantities do not
explicitly depend on pointing angle.
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3.3 ISOTROPIC EXAMPLE.

An isotropic example is presented in this section to illustrate some of the effects
of the antenna on the parameters discussed above. For this example, both the angular
scattering and the antenna beam pattern will be assumed to be isotropic, so

ix = .y = o (169)

and

2 ln2 X 2

au = - 202 (170)

Without further loss of generality, it can be assumed that the antenna is pointed in the
x-direction and that the rotation angle is zero. The components of the pointing vector
are then given by

2n
Kox = X sin e 0  (171a)

Koy = 0 . (171 b)

With these assumptions the Q factors become

QX= Qy = + 41n2 X2  (172a)

Q = 0 (172b)

At this point it is convenient to write the antenna beamwidth in terms of the antenna
size in order to eliminate the explicit dependence of the Q factors on carrier
wavelength:

0 0 =a (173)

where, for uniformly-weighted antennas,

1.02899 Circular antenna
ao = 0.885893 Square antenna (174)

The Q factor can then be written as

1 +0. 6 - Circular antenna

Q 2 (175): 0.358 Ciclr2 nen
+ .5 02 Square antenna
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The mean received power for isotropic scattering and an isotropic antenna is

PA = Qexp - o2 2  (176)

when the pointing angle is assumed to be small compared to one radian so sinE 0 is
approximately equal to 90. For a given value of 9-D ''.c., for a fixed value of Q) the
effect of antenna pointing, as expected, is to mon,,,,kIcally decrease the mean received
power as the antenna beam is pointed farthc, --way from the line-of-sight. In the limit
that the decorrelation distance is much ,-.,ger than the antenna diameter, the Q factor
approaches unity and the mean ".ceived power is approximately equal to 1/Q
independent of pointing angle in other words, when the angular scattering standard
deviation is large compare-,' to the antenna beamwidth and the pointing angle, the mean
power is insensitive 1 me location of the beam peak relative to the line-of-sight.

The scattering loss LS (LS = I/PA) for a uniformly-weighted circular antenna is
plotted in Figure 9 versus the ratio 9o-/D when the pointing angle of the antenna beam
is 0, 0o/2 and 00. It is assumed for this example that the beamwidth remains constant as
the beam in pointed away from the line-of-sight. When the decorrelation distance is
large compared to the antenna diameter, the curves approach the line-of-sight loss of
beam (0 dB for a pointing angle equal to zero, 3 dB for a pointing angle equal to one-
half beamwidth, and 12 dB for a pointing angle equal to a full beamwidth). When the
decorrelation distance is small compared to the antenna diameter, the angle-of-arrival
spread of the incident signal is large compared to the beamwidth, so, as mentioned
above, the scattering loss is insensitive to pointing angle as long as the pointing angle
remains within a few beamwidths of the line-of-sight. Between these two limits, the
scattering loss of a beam pointed away from the line-of-sight may actually decrease
with decreasing 10/D as the signal is scattered away from the line-of-sight and into the
main lobe of the antenna.

The equation for the ratio of the filtered to unfiltered frequency selective
bandwidth, fA/fO, for this isotropic example is

fA 1- I3
f- = Q 2 2.2 (177)

Q + 2a2gt2(Q-1)2 2 D 2
0D

It is interesting to note that when the pointing angle is zero the ratio fA/fo is equal to Q
which is also equal to the scattering loss in this case. Figure 10 shows plots of the ratio
fA/fO as a function of the ratio 9.0/ for a uniformly-weighted circular antenna and for
three pointing angles.
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Figure 9. Scattering loss for a uniformly-weighted circular antenna and
isotropic scattering.
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Figure 10. Filtered frequency selective bandwidth for a uniformly-
weighted circular antenna and isotropic scattering.
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For an antenna pointed along the line-of-sight, the potentially beneficial effect of
antenna filtering is that the signal which is filtered out is that which arrives at
relatively large delays. It is this delayed signal that causes most of the intersymbol
interference in the detection and demodulation of wide bandwidth signals. Stated
another way, because the antenna filters out much of the delayed sir qi, and since the
frequency selective bandwidth is an inverse measure of the signal delay spread, the
filtering increases the frequency selective bandwidth of the output signal relative to that
at the antenna input.

Clearly the situation is different if the antenna is pointed away from the line-of-
sight. The ratio fA/fO is less than unity for non-zero pointing angles and values of .o/D
between about 0.1 and 1.0. This implies that the standard deviation of the delay jitter
is increased by the antenna. This does not imply however that the antenna is somehow
creating more signal power at long delays than is incident on the antenna, as measured
by f0 . Rather, the antenna pointed away from the line-of-sight is weighting the power
at long delays more than that at short delays with the peak weighting occurring at the
delay that corresponds to the pointing angle. The result is an increased value of the
time delay jitter standard deviation. Thus intersymbol interference effects in the
output of an antenna beam may increase as the beam is pointed away from the line-of-
sight.

Antenna filtering also affects the decorrelation time of the received signal. For
isotropic scattering and an isotropic antenna, the equation for the ratio TA/To reduces to

-A (178)
TO Q + (C 1t+C)(l-Q)

This equation is plotted in Figure 11 versus the ratio ko/D for various values of

C = C'+ C2
C Yt (179)

As discussed above, the antenna-filtered value of decorrelation time is not
explicitly dependent on the pointing angle. It does depend strongly on the model for
the temporal fluctuations. For the turbulent model (CXt + Ct = 0), the Doppler
spectrum is independent of angle, so the signal arriving at all angles has the same
decorrelation time. Hence the filtered value of decorrelation time is equal to that of
the incident signal (i.e., rA/,r0 = 1) for this model. For larger values of C2t + C2t there
is coupling between the angular spectrum and the Doppler spectrum of the incident
signal. The effect of an antenna is to narrow the angular spectrum of the received
signal as shown in Figure 7. Thus when Ct + C~t is greater than zero the antenna also
narrows the Doppler spectrum of the received signal. Because the decorrelation time
of the signal is an inverse measure of the width of the Doppler spectrum, the
decorrelation time of the signal out of the antenna increases as antenna filtering effects
increase. For the frozen-in case, C2 + Ct is equal to unity and TA/To = <. This
expression gives the upper limit of the antenna-filtered decorrelation time.
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Figure 11. Filtered decorrelation time for a uniformly-weighted circular
antenna and isotropic scattering.

The corresponding mean Doppler shift is

02raoCxt(Q-1) 8D go (180)

The normalized mean Doppler shift due to antenna pointing, too)A/Cxt, is plotted in
Figure 12 versus the ratio io/D.
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Figure 12. Normalized mean Doppler shift due to antenna pointing for a
uniformly-weighted circular antenna and isotropic scattering.
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SECTION 4
CHANNEL SIMULATION

A statistical channel simulation technique is described in this section that allows
realizations of the impulse response functions to be generated at the outputs of multiple
antennas with spatial and temporal correlation properties given by the GPSD and with
Rayleigh amplitude statistics. Realizations generated with this technique represent only
the diffractive part of the received voltage, and they are valid only under strong-
scattering conditions where the GPSD is valid and where Rayleigh statistics apply.
Under these conditions, however, they represent a solution of Maxwell's equations for
propagation of RF waves through randomly structured ionization.

The channel simulation technique for the General Model that is described here
was developed by Dr. Leon A. Wittwer of the Defense Nuclear Agency (DNA), and
has been implemented in the channel model Fortran code ACIRF (Antenna/Channel
Impulse Response Function) written by the author and Dr. Wittwer. This code is
available to qualified users through DNA.

The basic formalism used to generate statistical realizations of the channel
impulse response function without antenna effects explicitly included was first
developed by Wittwer [1980] for isotropic irregularities. Knepp [19831 extended the
technique to the case of elongated irregularities. (The elongated case corresponds to a
90 degree penetration angle and to an infinite axiai ratio.) The channel simulation
technique was further generalized by Dana [19861 to include the effects of general
anisotropic scattering and multiple antennas.

4.1 IMPULSE RESPONSE FUNCTION.

A key assumption used to generate realizations of the channel impulse response
function is that the channel is statistically stationary (in the wide sense) in space,
frequency, and time. As a consequence, the impulse response function is delta
correlated in angle, delay, and Doppler frequency. This allows the impulse response
function to be generated from white Gaussian noise in the angle, delay, and Doppler
frequency domains, and then Fourier transformed to the space and time domains. If
necessary for a particular application, the Fourier transform from delay to frequency
may be performed to obtain the channel transfer function.

The impulse response function at the output of an aperture antenna located at Po
and pointed in direction K0 is given by taking the Fourier transform of the wave
equation solution UA(Po,w,t) (Eqn. 121) from the frequency domain to the delay
domain with the result:

00

hA(Po,Tt) = Jh(pt,t) A(p-p 0 ) exp [iK 0.(p-p 0 )j d2p (181)
-CO

This equation represents the spatial convolution of the aperture weighting function and
the imr,.se response function h(p,,tj) of the signal incident on the face of the aperture.
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The channel simulation technique depends on writing h(p,x,t) in terms of
Fourier transforms from angle to space and from Doppler frequency to time. In order
to show that Equation 181 can be written in this form, first consider writing h(p,z,t) in
terms of its Fourier transforms:

h(p,'t,t) = (2 0_ 2W: exp [i(K.p - ODt)] (KjtD) (182)

Equation 123 gives the aperture weighting function A(p-p 0 ) in terms of its Fourier
transform and the antenna voltage pattern g(K£). Substituting these expressions into
Equation 181 and doing the usual change in the order of integration to produce a delta
function results in

00d 2K, 'dtOD

hA(Po,T,t) = - (f )2 f.t exp [i(K 1 .po-O)Dt)] g(KL-K 0 ) (K,,,OD) .
-CIO (27" " 0 0

(183)

This equation is used to generate realizations of the impulse response function by
first generating random samples of I(KIJMD) and then performing the indicated

Fourier transforms. Because of the assumption of a statistically stationary channel,

f(KIJoD) must be delta correlated in angle, delay, and Doppler frequency:

KI(K,to)D)1*(K ',t ',=) S(Ki,T,0D) 8(K±-K') 6(t-') 8(cOD-0t) (184)

The first-order amplitude statistics of the complex quantity h(p,t,t) are Rayleigh
which is a consequence of the central limit theorem. That is, h(p,z,t) represents the
summation of many scattered waves travelling in slightly different directions. Thus the
two orthogonal components of h(p,Tt) (either the in-phase and quadrature-phase
components or, in the notation used in this report, the real and imaginary parts) are
independent, zero mean, normally-distributed random variables. Consequently the
resulting amplitde is Rayleigh distributed, and the resulting phase is uniformly
distributed. Equation 181 indicates that hA(p,t,t) is the summation or integration of
weighted values of h(p,t,t) and is therefore also Rayleigh distributed (i.e. the sum of
normally-distributed random variables is itself normally distributed). Strictly speaking
the statistics of f(K±,Z,O)D) could be almost anything that obeys Equation 184, and the
central limit theorem could be invoked to argue that h(pt,t) and hA(p,t,t) are zero-
mean, normally-distributed complex quantities. Indeed, multiple phase screen
techniques can be used to generate Rayleigh-distributed realizations of h(p,T,t) starting
with just random phase perturbations of an electric field. However, such faith in the
central limit theorem is not necessary if (Ks,t,oD) starts out as a zero-mean,
normally-distributed complex quantity. This allows many fewer points to be used in
performing discrete Fourier transforms from angle to space than would otherwise be
required to guarantee Rayleigh statistics.
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4.2 GENERATION OF REALIZATIONS.

The first step necessary to generate realizations of the impulse response function
is the evaluation of the GPSD on an angular Kx-Ky grid. Once the power in the
angular grid cells has been obtained, these quantities are used to construct random
samples of the angular spectrum of the signal. The delta-function relationship between
angle and delay (Eqn. 105) is used to relate an annulus in the Kx-Ky grid to specific
delay bins, and the translation properties of the GPSD seen in Equation 105 are used to
relate specific angles to Doppler bins. The random angular spectrum is then multiplied
by the antenna beam pattern, and a two-dimensional discrete Fourier transform (DFT)
is performed to the antenna phase center location. A final Fourier transform from the
Doppler frequency domain produces the impulse response function as a function of
time and delay. Examples of such realizations are presented in Section 5.

Before launching into a detailed discussion of the channel simulation technique, it
is useful to consider the consequences of the shifting property of the angle-Doppler
GPSD (Eqns. 106 or 109).

4.2.1 Computationally Efficient form of the Impulse Response
Function.

The angle-Doppler GPSD in Equation 106 contains terms of the form Kxkix -
Cxtt'[oUD and Ky 9y - CytToCD. Thus, except for the leading Gaussian term in Equation
106, the mean signal power at a non-zero Doppler frequency can be obtained from the
GPSD evaluated at zero Doppler frequency and shifted in angle by the appropriate
amount. This fact is used to reduce the computations necessary to generate realizations
of the impulse response function.

To see the consequences of the shifting property, consider the impulse response
function given by Equation 183 which is the basis of the channel simulation technique.
In continuous notation and using the delta-function relationship between angle and
delay, the rand-m angle-Doppler-delay spectrum of the signal may be written as

Ay K x+K)
{(KN,(D) N(KIOD) SKD(K_,O)D) if t = -(185)

0 otherwise

where -N(KI_,_OD) is white Gaussian noise with unity mean power and with the

properties

('KN(K ,o)D)W(Kmb)) = 5(K 1 -K') 6 (OD-ctb) (186a)

N(KL,O)D)'N(K,0*D)) = 0 (186b)

Now the key point to be made here is that the angle-Doppler GPSD,
SKD(Kx,Ky,O)D), may be written in the form
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SKD(Kx,Ky,WoD) = SD(J)D) SKC(Kx-Cxttoo)D/.x,Ky-CytoOD/y) (187)

where

SD(O)D) = Nf- toexp[- 4  (188)

and where

SKC(Kx,Ky) x (189)

2(1 K,.(1 -- c2

× exp K4(1 - - Cyt ) I2]

After inserting these expressions into Equation 183, the impulse response function is
CI K 0 dK 0 d(OD

hA(Pott) = f x " f -j -exp [i(Kxxo+KyYo-cODt)] (190)
-00 -00 -00

x g(Kx-Kox,Ky-Koy) N(Kx,Ky,WD)

x x]SD(OD) SKC(Kx-CxtoCOD/ix,Ky-CyttoOD/9-y)

where po = (Xo,yo). Of course the delta-function relationship between angle and delay
still holds although it is not shown explicitly in this equation. The problem with this
expression as written is that SKC must be recomputed for each new Doppler frequency,
which is time consuming.

However SKC can be evaluated once at zero Doppler frequency and shifted for
non-zero frequencies. In a digital simulation this shift is most efficiently done in
discrete steps. Thus let

Cxt~oOD = mxAKxix + FXx (191a)

CytTOWD = myAKyiy + £yiy (191b)

where AKx and AKy are the angular grid cell sizes that will be used to numerically
evaluate Equation 190,

rCxto0D 1
mx = int Fo (192a)L xAKx

7CyttoOWD]
my = int IyAKy (192b)
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and Ex and -y are the residuals after the discrete shifts. The function int [.] denotes the

integer part of the argument. Now define a shifted angle-Doppler GPSD, denoted SKS:

SKS(KxKy) = SKC(Kx-CxtCo(OD/i x,Ky-CytToCOD/ky) . (193)

After substituting this into the equation for the impulse response function and changing
angular variables to

K' Kx - ex (194a)

K = Ky- (194b)

Equation 190 becomes

f dK ' 0 _ 0
hA(Po,t,t) = 0 tdK 2-D exp {i[(Kx+ex)xo+(Ky+eY)y °-o.Dt] } (195)

-021 -02 -02

x g(Kx+x-K0x,Ky+cy-Koy )  N(Kx+x,Ky+Ey,MD) N1SD((OD) SKS(KxKy)

We have ignored the residual shift in the arguments of SKS so this function is the
result of a discrete shift of the function SKC. Equation 195, in discrete form, is used to
generate the impulse response functions at the outputs of multiple antennas.

4.2.2 Discrete Evaluation of the GPSD.

The first step in generating the impulse response function at the output of an
antenna is the evaluation of the GPSD on a discrete Kx-Ky-OD grid. The delta-
function relationship between angle and delay is used to relate signal components
within an angular annulus to a particular delay bin. Thus at this point it is not
necessary to explicitly include delay, and the GPSD can be integrated over this
variable. In order to assure conservation of energy (or, more correctly, to conserve
signal power), the GPSD is integrated over each K,-Ky-OD grid cell, and that power is
assigned to the center point of the cell. A procedure for efficiently performing the
three-dimensional integral is described in this subsectior.

The two-dimensional angular and Doppler grids are defined by the equations

Kx = kxAKx (-Nx/2 < kx < Nx/2-1) (196a)

Ky = kyAKy (-Ny/2 < ky < Ny/2-1) (196b)

WDD = mDAWD (-ND/2 < mD < ND/2-1) . (196c)

The requirements on the grid cell sizes AKx, AKy, and AOD and on the number of grid
cells Nx, Ny, and ND will be discussed later.
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(kx+l/2)AKx (ky+l/2)AKy (mD+I/2)AOD

EA(kx,ky,mD) = 2dtdKY 2dO2D SA(Kx,Ky,0)D)
(kx-1/2)AKx (ky-1/2)AKy (mD-I/2)AWD

(197)

Equation 197 is completely general, but it implies that the triple integral must be
computed and stored separately for each antenna with different beamwidths or pointing
angles. If, however, it is assumed that the antenna beam pattern is constant across a
Kx-Ky-O)D grid cell, then this equation can be approximated by

EA(kx,ky,mD) = G(kxAKx-K x,kyAKy-Koy) EKD(kx,ky,mD) (198)

where EKD(kx,ky,mD) is the incident signal power in the Kx-Ky-O)D grid cell. The
accuracy of this approximation is addressed in Appendix C where it is shown to
conserve energy (or power) to within a small fraction of a percent.

In order to produce an efficient channel model, the quantity EKD(kx,ky,mD)
must be readily evaluated. Therein lies a major problem of the general model.
Straightforward evaluation of EKD requires a closed-form expression for the triple
integral:

(kx+1/2)AKx (ky+l/2)AKy (mD+1/2)ACODfdKx fd K dm sDK,, )
EKD(kx,ky,mD) = U-0P SKD(KxK2 -OD)

(kx-l/2)AKx (ky-l1/2)AKy (mD-I/2)AWD

(199)

where the integrand is given by Equation 106. It is clear that the Kx-Ky and angle-
Doppler cross terms in the expression for SKD(Kx,Ky,O)D) do not allow a simple closed
form expression for EKD in the general case, although such expressions can be
obtained in the frozen-in and turbulent limits.

Two "tricks" are used to efficiently evaluate Equation 199. The first trick is to
take advantage of the translational properties of the GPSD described in the previous
subsection. The power in a Kx-Ky-O)D grid cell is

(mD+ I /2)A)D
d d0)D D(0D 2

EKD(kx,ky,mD) = I S D(WD)

(mD-l/ 2 )AWD

(kx+1/2)AKx (ky+l/2)AKy

x 5 dK x dK SKc(Kx-Cxt O')D/iX'Ky-CytUD/i .)

(kx-I/2)AKx (ky-I/2)AKy
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The key to simplifying this expression is to note that the Doppler grid cell size is
relatively small because of the large number of Doppler samples that are required to
produce a long time realization. Thus it can be assumed that SKC is constant over a
Doppler cell, and Equation 200 reduces to

EKD(kx,ky,mD) = ED(mD) EKc(kx-mx,ky-my) (201)

where

ED(mD) {erfc [(mD_ 1/2-)ToD - erfc [(MD+1/2)T0 AOD} (202)

The quantity EKc(k,-mx,ky-my) is the power in a shifted Kx-Ky grid cell. Because of
the Kx-Ky cross terms in the expression for SKC, an easily evaluated closed-form result
is still not obtainable for EKC.

The second trick used in the channel model technique is to note that a rotation by
the angle 10 (Eqn. 108) in the Kx-Ky plane produces an orthogonal form of the GPSD
which does not contain angular cross terms, and is therefore readily integrated. This
orthogonalized GPSD is given by Equation 109, which has the following form for its
angular part:

SKC(KpKq) exp- _ 2 2) (203)

(1 C2 )(I _ C21 ) L 4(1 - CPI) - 4(1 - Cqt)j

The signal power in a Kp-Kq grid cell, with indices kp and kq respectively, is

EKC(kp,kq) = Ep(kp) Eq(kq)

where

Ep~ 1{ Uef (kp-1/2)AKpk e-f] [ -(kp+lI/2)AKp i.p } (204)Ep(kp) = T erfct 241 - Cperfc 2 1 _CP]

A similar expression holds for Eq(kq).

Now, EKC(kp,kq) can be computed on a fine Kp-Kq grid, and the values simply
assigned to the Kx-Ky grid cell in which they fall. The Kx-Ky cell indices are
computed as follows:

S= nt kpAKpcosO - kqAKqsinJ (05a)kx =I AKx -120a

FkpAKpsinO, + kqAKqcosi5

ky = int [AKy ] (205b)
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The total power in a Kx-Ky grid cell is then the sum of all EKc(kp,kq) values that fall
within the Kx-Ky cell. Roughly ten Kp-Kq grid cells are required within each Kx-Ky
cell for this brute-force procedure to work. Thus the Kp-Kq cell sizes are determined
by the expressions:

AKp 0 Cos2 .1 sin2, (206a)

_(AKx)2 (AK y)2 1

0.1 (206b)

AKq [ sio cos2 1 2

_(AK) 2 + (AKy)2

A detailed description of the algorithms used to compute EKC(kx-mx,ky-my) and
to shift this array for different Doppler frequencies is given in Appendix D.

4.2.3 Random Realizations.

The next step in the channel model is to generate a random realization of the
angle-Doppler spectrum of the impulse response function and to assign the spectral
components to delay bins using the delta-function relationship between angle and delay.
Discrete Fourier transforms are then performed to obtain the impulse response
function.

4.2.3.1 Assinment of Angular Spectral Components to Delay Bins. The delta-
function relationship between angle and delay (Eqn. 105) in the diffraction-limited
form of the GPSD is used to assign angular spectral components to discrete delay bins.
This form of the GPSD is non-zero only when

2K 2 2
1: = )" 

(207)

A straightforward approach to assigning angular spectral components to delay
bins is to compute the right-hand side of Equation 207 at the center of each K'-Ky grid
cell and to compute the index of the delay bin using

= t Ay(Kx+Ky) (208)
AT = 4CcohAt

where AT is the sample size of the delay bins. The problem with this approach is that
when the delay sample size is sufficiently small, the number of angular spectral
components that fall within a delay bin may vary substantially from one delay bin to
the next producing ragged statistics. A simple solution to this problem is to randomly
wiggle the angular grid cell centers before applying Equation 208. This spreads
angular spectral components more or less uniformly into any one of several delay bins,
and results in better agreement between the ensemble signal power in a delay bin and
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the realization power in that bin. The randomly-wiggled angular grid cell centers are
computed as

Kx = [kx + U,x - IAKx (209a)

K = [k + U,y - IAKy (209b)

where U,x and ,Uy are independent, uniformly distributed random numbers on the
interval [0,1). These wiggled cell centers are then used to compute the corresponding j
index of the delay grid.

In this way each angular spectral component is assigned to a unique delay bin.
Because the angular spectral components are uncorrelated, this procedure also
guarantees that the impulse response function is uncorrelated from one delay bin to
another.

4.2.3.2 Discrete Representation of Impulse Response Function. The discrete
impulse response function is defined on a discrete time and delay grid defined by the
equations:

t = ntAt (nt=l, 2, , Nt) (210a)

T = jA'r (j=0, 1, .. ,NT -1) (210b)

The requirements on the discrete time step At, the number to time steps Nt, the delay

sample size At, and the number of delay bins Nt will be given in Section 4.3.

Equation 195 gives the impulse response function in terms of Fourier transforms
from the random angle-Doppler spectral components to the time domain at the location
of the phase center of each antenna. In discrete form, this equation is

ND/2-1 Nx/2-1 Ny/2-1

hA(jAT,ntAt) = _3 AD N AKx AKy
AKxAKyA(ODAt 27 a2

mD=-ND/ 2  kx=-Nx/2 ky=-Ny/2

x exp { i[(kxAKx+Ex)xo + (kyAKy+ey)y 0 - mDA(ODntAt]} (211)

x g(kxAKx+cx-Kox,kyAKy+F-y-Koy) N(kx,ky,mD)

x 'IED(mD) EKS(kxAKx,kyAKy)

The normalization factor (8713 /AKxAKyAODAT) has been chosen so that hA(jAT,ntAt)AT
represents the received signal during the delay interval jAt to (j+I)AT. As the Kx and
Ky sums are performed, Equation 208 is used to assign angular spectral components to
delay bins. Then the signal components in each delay bin are Fourier transformed
from the Doppler domain to the time domain.
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The quantity 'N(k,,ky,mD) is a complex, zero-mean, Gaussian random variable

with the properties

( N(a,b,cj(o,[3,y)} = 6a,c 6 b, c,y (212a)

("N(a,b,c)) = 0 (212b)

(KN(a,b,c) ,N(C(,[,y)) = 0 (212c)

where 8m,n is the Kronecker delta symbol. A convenient method of generating the
complex, zero-mean, Gaussian random numbers is to use the following equation

, = \- PO In(, U,1) exp ( 2 tiU,2) (213)

where .LU. and I.. are independent random numbers uniformly distributed on the
interval [0,1), and P0 is the mean power of the random samples (P0 =I(.-*, 1 for
this application).

In comparing the discrete equation for the impulse response function with its
continuous-variable analog (Eqn. 195), note that the residual shifts cx and -y may be
ignored in the arguments of the random spectral components, N, because shifted white
Gaussian noise is still white Gaussian noise.

4.2.3.3 Elimination of the DC Component. As written, the equation for the
discrete impulse response function (Eqn. 211) allows a Doppler spectral component
with zero-Doppler frequency (i.e. the mD = 0 component). This component will in
turn result in a DC component in the time domain realization, which is undesirable,
particularly if the DC component is large.

A simple solution to this problem is to set the zero-Doppler frequency
component of 'N(kx,kx,mD) to zero. Just doing this, however, results in reducing the
mean power in the impulse response function by the zero-Doppler frequency power,
ED(0).

This latter problem can be simply solved by alloying the Doppler frequency bins
adjacent to zero Doppler to expand in size. Thus the first positive Doppler frequency
bin encompasses frequencies 0 to 3AWD/2 and has power ED(1) + ED(0)/2. Similarly,
the first negative Doppler frequency bin encompasses frequencies 0 to -3AWD/2 and
has power ED(-1) + ED(0/2. All other Doppler frequency bins encompass frequencies
(mD-I/2)AO)D to (mD+I/2)AO)D and have power ED(mD).

4.3 GRIDS.

Angle and Doppler frequency grid sizes are determined by requiring that the
an gular-Doppler grid encompass a large fraction, say 0.999, of the power in the GPSD
of the signal. The 0.001 error must then be allocated between the angular and Doppler
parts of the three-dimensional grid. An arbitrary, but intuitively reasonable, allocation
is to divide the error equally between the angular and Doppler frequency parts of the
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grid and equally between the two angular components. Thus the Doppler grid limits
are determined by requiring that the Doppler grid encompass "\[6.999 of the Doppler
frequency power, and each angu!ar grid must encompass (0.999)1/4 of the angular
power

The angular and Doppler frequency power spectra are all Gaussian. Thus each
can separately be written in the ,orm

S(K) = "rexp - (214)

where )c is a normalized angle or Doppler frequency (i.e. K is equal to Kx~x or KyDy
or t O)D). In order for a K grid to encompass a fraction (, of the signal power, it must
extend froll -Kmax to +nimax where

Jo f " S()C) dK (215)

This equation is easily solved for Kmax in terns of 0 with the result

gma x  2 erf-I ( o) (216)

where erf-1 (.) is the inverse error function. If 0 is chosen to be "10.999 for the
Doppler frequency grid, then

KDrnax = 2x2.4612 = 4.9224 , (217a)

and if C( is chosen to be (0.999)1/l for either angular grid, then

KKnax = 2x2.5895 = 5.1790 . (217b)

A second requirement on the size of the angular, Doppler, and delay grids is that
they be defined at the output of the antennas, thereby eliminating areas of the grids that
contribute to the signal power incident on the antennas but do not contribute to the
power of the output signals because of antenna filtering. Much of the complexity of
the algorithms used to determine grid sizes is a result of this requirement, but
computing grid sizes in this way results in a substantial reduction in the size of the
grids, and therefore in computation time, when antenna filtering effects are large.

The numbers of cells in the angular (N, and N ,), delay (NI), and time (Ni) grids
are inputs to the channel simulation. The delay sample size (At) and the number of
samples per decorrelation time (No) are also inputs. From these quanlities and tlhe
channel and antenna parameters, the angular (AKx and AKy), )oppler (Aw,)), and time
(At) grid cell sizes and the required number of Doppler samples (ND) are computed.
Requirements on input grid parameters and consistency checks on computed grid
parameters are described in the next subsections.
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4.3.1 Ang ular Grid.

Angular grid sizes are determined by the requirement that the fracUon N\0.999
0.9995 of the signal power after antenna ft!tering be contained in the two-dimensional
angular grid. First consider the K, grid. Because of the symmetry in the angular
grid, the requirements on the K, grid can then be obtained by analogy.

The K, power spectrum at the output of an antenna is

00 CIO 00
dK d(oD

SA(Kx) J f J dT I 2 G(Kx-Kxo,Ky-Ky,) S(Kx,Ky,T,Ou) (218)
-0O -00 -00

v1tx Q Kxk. ( A_ 9 vKxix A_
- cr- exp uXK u - c K - y -- + A- -

whei -

Ax = (Qx-1 )Koxxix + Qx,Kyiv (219a)

Ay = QxyKox9.x + (Qy-1)KOyiy (219b)

The limits of the K, grid are determined by requiring that

Kx,nax
C dKx

oPA : SA(Kx) (220)
-Kx,max

If the coefficient of the linear Kx term in the ejp,,,ient of Equation 21 8 is positive then
the lower limit of the integral in Equation 220 can be replaced by --. Conversely, if
the coefficient is negative then the upper limit can be replaced by +-. Either way, dUi
result for 0 is

1 + V QOKxnayix I AxQy - AyOxyli

where erf (-) is the error function. Setting 0 equal to (0.999)1/4 and solving for
Kxmax gives the following approximate result:

KK,max IAxQ - AyQxyl 2 22a)
K xmax - + k A 222r)i-AxQc)N/ Q'

Similarly, the lir-it of the Ky grid is

K x KK Xax  IA Qx - Ax(xI(2
Ky~max - Ay + 2 2 2h
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The first terms in the expressions for Kx,nax and K give the required
extent of the grid when the antenna is pointed along the line-of-sight. The second
terms, which are non-zero only when the antenna is pointed away from the line-of-
sight, give the amount by which the grid must be extended in ordei for the grid to
encompass the beam.

Clearly, Kxmax and Kymax depend on antenna beamwidths and pointing angles
because of the A and Q factors. If there are multiple antennas then Kx.nax and Ky'max
must be computed for each antenna. The largest values are then used to determiine the
boundaries of the angular grid.

Tfhe angular grid cell sizes can now. be computed as

2Kx,max
AKx (223a)

2K.,mnax 
(223b)AK, =Q. N,

where the number of grid cells, N, and N,, are inputs to the channel model.

A reasonable minimum value for the number of Kx or K, grid cells is 32.
ttoAever, this number may not be sufficient if there are multiple antennas with
different phase center locations. Consider the two antennas with the largest
separations, d, and dr, in the x-y plane. Because the impulse ,esponse functions at the
outputs of the two antennas are generated by discrete Fourier transforms from the
angular domain to the phae center locations of the antenna, the unambh- ious distances,
27r/AKx and 2i/AK.v, of the DVIs must exceed the maximum antenna separations, say
h% a tactor of 2. This then puts upper limits on AK, and AKv:

AK, ( (224a)

d,

AK, (224b)K < d,

If these criteria are not met, then N,, and/or Ny must be increased, thereby decreasing
AK, and/or AKy, until they are Pit. The minimum required values for N. and N, can

then he writter, as

N max 32, 2dxKx_,n" (225a) Ir
\,. t: a* 2 ¢225

111ax(225h



4.3.2 Doppler Frequency and Time Grids.

The Doppler frequency grid size is also determined by the requirement that 99.9
percent of the signal power after antenna filtering be contained in the Doppler
frequency grid. Thus the antenna-filtered Doppler power spectrum is required. This
function is most easily obtained by noting that the temporal coherence function has the
form

FA.(t) = PA exp- -+ i0)At I (226)

Recall from Section 3.2.3 that 0)A is the mean Doppler shift due to antenna pointing.
The Doppler power spectrum is then given by the equation

oo r TA (0J)D+0J)A) 2 -

SA(O)D) f VA(t) dt = - TAPAexp 4 (22T)

The calculation of the limits on the Doppler frequency grid is exactly analogous
to that done for the angular grid. The limits of the WD grid are determined by setting

¢ equal % 0.999 in the equation

0()Dmax
I dO)D

t,)P. SA(0)D) 2T (228)

-W)D'max

Solving for C.,

_ <'TA(-)D,max-I1OAI)(I2 erf 2 1 229)

gives the follow*ing approximate result for 0DD,max:
Kr) max

W)D.max = - --- + 1)A\1 .230)

The first term in this expression gives the required maximum Doppler frequency
when the antenna is pointed along the line-of-sight, and the second term is the result of
t-he mean Doppler shift effect of antenna pointing. If there are multiple antennas, then

, must be calculated for each antenna, and the largest value used to determine the
Doppler grid size.

At this point the required number of Doppler frequencies ND is still unspecified.
11f),Aever, hecause a fast Fourier transform (-7t) will be used to transform 1n(m
Doppler frequency to time, the time grid requirements may he used to derive thQ
Doppler frequency grid cell size -O)D and then the required number of Doppler
t requency sample,. ND.
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Consider the requirements on the time samples. Dana 11982, 19881 has shown
that at least 10 samples per decorrelation time are required to accurately reproduce the
temporal statistics of Rayleigh fading. This is also a DNA requirement on Rayleigh
Fading realizations of the impulse response function [Wittwer 1980]. The time grid
cell size is then

TAnmin
At = No (231)

where No is the number of samples per decorrelation time (No must be greater than or
equal to 10), and TA,min is the smallest value for all antennas of the filtered
decorrelation time.

In addition, DNA requires that there be at least 100 decorrelation times in all
realizations of the antenna output impulse response function. Thus,

1 0 0 'tA\rax

N I OAt a,(232)

where ''Aax is the largest value for all antennas of the filtered decorrelation time. If
this condition is not met then the number of time samples Nt must be increased. It is
also necessary that Nt be equal to a power of 2 in order to use an FFT. The minimum
value of Nt is then 1024 in order to meet the requirement in Equation 232 with No
equal to 10.

Because of the FF1' relationship between the time and Doppler frequency
domains, the Doppler frequency grid cell size is

2yr
A)D = NIkt (233)

The minimum number of Doppler frequency samples necessary for the grid to
encompass the maximum required Doppler frequency is then given by

ND = 2)Dma = Nt0)D,maxTA,min (234)AO)D 7rNO3

In general, ND will be smaller than Nt implying that fewer than Nt Doppler
frequency samples are required. The Doppler frequency arrays may then be zero-
padded to N t samples before the FF1 is performed. If, however, ND is greater than
N1 , the implication is that there are too few samples per decorrelation time, and No
must he increased.

The minimum number of Doppler frequency samples can be computed from
F-quations 230 and 234. If all antennas are pointed along the line-of-sight, then the
minimum value of ND is

N[)njn Kt)Fjwj x N1  (235)
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For realizations with 100 decorrelation times (N[/N(j = 100), the minimum number of
Doppler samples is approximately 150. If antennas are pointed away from the line-of-
sight, the required number of Doppler samples will increase beyond 150.

4.3.3 Delay Grid.

The delay sample size is usually chosen on the basis of the modulation bandwidth
of the transmitted signal, and is therefore not a parameter that is under the direct
control of the channel simulation. For example, in a phase-shift keying (PSK)
application there must be at least two delay samples per channel symbol in order to
accurately simulate the transmitted frequency spectrum. The delay sample size is then
generally chosen to be equal to one-half the channel symbol period. In a frequency-
shift keying (FSK) application with frequency hopping, the delay sample size is chosen
so that the unambiguous frequency bandwidth of the impulse response function, 1/At,
exceeds the hopping bandwidth by some comfortable margin.

The number of delay bins is an input to the channel simulation. The requirement
on both N-r and AT is that the realization delay grid size NTAT encompass at least 97.5
percent of the delayed signal power at the outputs of the antennas. A somewhat smaller
percentage is used to define the limits of the delay grid than is used to define other grid
limits because of the slower decay of signal power with delay than with angle and
Doppler frequency (exponential decay with delay versus Gaussian decay with angle and
Doppler frequency).

The ensemble signal power in the delay bins is given by the integral

1j+ I )AT
P J SA(T) dT (236)

jAt

where SA() is the delay power spectral density at the output of an antenna. The
general expression for SA(T) is quite complicated when the antenna is pointed away
from the line-of-sight, and will not be given here. The reader is referred to Frasier
[19881 for details on SA(T).

The total signal power in the delay grid,

P =  P , (237)
j=0

must be greater than or equal to 0.9 7 5 PA. If not, then either N,[ or AT or both must be
increased.
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SECTION 5
MATCHED FILTER EXAMPLES

This section presents examples of the received voltage out of a filter matched to
a transmitted square pulse. These examples are intended to illustrate the effects of
frequency selectivity and antenna filtering on a transionospheric communications link
and to illustrate the differences in the structure of the received signal depending on
whether the frozen-in, turbulent, or general models are used to generate the impulse
response function realizations. The following calculation also illustrates how the
received voltage can be con,,tructed from the impulse response function realizations in
a diital link simulation. Additional examples for specific system applications may be
found in Bogusch, et. al. [19811 and in Bogusch, Guigliano, and Knepp [19831.

5.1 MATCHED FILTER OUTPUT SIGNAL.

The output of a matched filter can be constructed by convolving the impulse
response function of the channel and antenna with the combined impulse response
function of the transmitter and receiver. A second approach is to construct the
combined frequency response of the transmitter, channel, antenna, and receiver and
then to Fourier transform that result to obtain the matched-filter output. This latter
approach is used for the examples presented in this section.

The starting point is to calculate the channel/antenna transfer function which is
the Fourier transform of the impulse response function:

I(0),t) f f h(z,t) exp (-iwct) dT (238)
0

This function represents the response of the channel and antenna at time t to a
transmitted sinewave with radian frequency w.

For a transmitted square pulse with a chip duration Tc, the voltage out of the
matched filter at time t can be written as

u(%t,t) j (o)) lI(0),t) exp (iodt) )239)

,xhere T is the time delay of the matched filter relative to the nominal time-of-arrival
(i.e. the time-of-arrival under benign propagation conditions). The combined
spectrum of the transmitted square pulse and the receiver matched filter is

sin2(woTc/22
TC: ( Tcl/2r: (240)

The impul>e response function is generated with NT delay samples ot size AT, so

the di,,crete channel/antenna transfer function has an unambiguous frequency response
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of 27t/AT radians. If this bandwidth is divided into NF frequency samples, then the
discrete channel/antenna transfer function at time ntAt is

Nt-I
H(kFAOj,ntAt) = h(jAt,njAt)At exp [-ijAtkFAo)] (241)

j=O

where Aw = 2t/( NFAt). Recall that the normalization of the impulse response
function is such that the factor AT following h(jAt,ntAt) must be included. The range
of the index kF in this equation is from -NF/2 to NF/2-1 representing a range of
frequencies from -NFAo)/2 to (NF-I)Aw/2. Of course the number of frequency
samples must be at least as large as the number of delay samples in order for the
transfer function to preserve the information contained in the impulse response
function. However, if the number of delay samples is chosen to be the minimum
number required, then it may be necessary to select the number of frequency samples
to be larger than the number of delay samples in order to minimize aliasing (in delay)
of the matched-filter output.

The output voltage of the matched filter, as a function of time and relative delay,
is then civen by

NF/2-1

Ao)Tc sin2(kFAoTc/2)!
u(T,nIAt) - ( j H(kFACO,ntAt) exp (ikFAO)T

kF=-NF/2

(242)

If the delay samples size At of the realization of the impulse response function is
chosen to be Tc/2, then Ao)Tc/2 = 27!/NF and u(t,ntAt) represents a signal that is band-
limited to the frequency range -1/'c to +l/Tc. Note that the matched-filter output
utl,t) is unarnbiguous in delay over the interval from 0 to (NF-I)At compared to the
delay interval of 0 to (N-c-I )At for the original realization.

In the examples that follow, the chip rate Rc is set at 1 MHz, and the random
realizations of the impulse response function are generated with a delay sample size of
TJ2 Tc = I/Re). lowever, the frequency selective effects depend only on the ratio of
the frequency selective bandwidth to the chip rate fVRc. For the antenna examples, a
uniformly-weighted circular antenna and isotropic scattering are assumed, Antenna
effects then depend only on the ratio of the antenna diameter D to the decorrelation
di,,tanLe Z, and the antenna pointing angle.

5.2 FREQIEN(Y SELECTIVE EFFECTS.

In a high data rate communications link, the major effect of frequency ,elective
tadin zs lntersvmoNl interterence. Even relatively small amounts of delay spread can
cata,,trophlcallv degrade demodulation performance in such a link using conventional
matched-filter deter t;ar technique,.
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Figure 13 shows examples of the matched-filter output amplitude for three levels
of frequency selective propagation disturbances, characterized by the ratio of the
frequency selective bandwidth f0 to the chip rate Rc. The impulse response functions
were generated using the frozen-in model (Cxt = 1.0 and Cyt = 0) and a small antenna
(i.e. D << k-o). Each frame in the figure provides a three-dimensional picture of the
matched-filter output amplitude for a single transmitted pulse as a function of time
delay (abscissa) and time (scale directed into the figure). The total duration of each of
the frames is 10 decorrelation times.

In the top frame the frequency selective bandwidth is equal to the chip rate and
only a small amount of distortion is evident in the waveform (which is slightly rounded
due to band limiting at the first nulls of the signal spectrum). The effect of fading can
be seen in this frame as the peak amplitude rises and falls with time. Some minor
distortion of the output amplitude is seen but for the most part the signal is contained
within the period of one chip. This channel is nearly-flat fading which means that all
frequency components within the signal bandwidth propaigate essentially the same way
through the disturbed ionosphere. There is very little time delay spread beyond one
chip in the matched-filter output.

The middle frame in Figure 13 shows the matched-filter output amplitude for
the case were fo/Rc is equal to 0.2. For this smaller value of the frequency selective
bandwidth, more of the signal energy is arriving with delays of more than a chip, and
there are multiple distinct peaks in the matched-filter output amplitude. It is these
structures that can cause delay tracking algorithms to lose lock and that cause
intersymbol interference which can degrade demodulation performance.

The bottom frame shows a highly disturbed case where f0 is a tenth of the chip
rate. This causes signal energy to be spread over approximately eight chip periods.
When a contiguous set of pulses is transmitted, the delay spread of the received signal
results in the simultaneous reception of information from about eight previous chips
which can produce severe intersymbol interference.

An effect due to the frozen-in model that is evident in Figure 13 is that the signal
arriving at long delays varies more rapidly in time than the signal arriving at shorter
delays. A comparison of the matched-filter output amplitude generated with the
frozen-in, general, and turbulent models is shown in Figure 14 for the case where fd/R
is equal to 0.1. The top frame in this figure for the frozen-in model is just a
reproduction of the bottom frame in Figure 13. Again 10 decorrelation times of the
signal are plotted. The middle frame is a general model realization (Cxt = 0.9 and Cyt
= 0), and the bottom frame is for the turbulent model (Cxt = Cyt = 0). The difference
between the top and bottom frames is that the turbulent model amplitude has the same
fading rate at all delays. It can be seen that the general model realization falls
somewhere between these two limiting cases.

77



!0 2

"e 0 '2 ,4 "6

r -- 4

DELA Y (CHIP-)

Figure 13. Effects of frequency selective fading.
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Figure 14. Comparison of matched filter output amplitude for the frozen-
in, general, and turbulent models.
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5.3 SPATIALLY SELECTIVE EFFECTS.

Spatially selective effects are important for high data rate communications links
that rely on large antennas to achieve sufficient signal-to-noise ratios for low error rate
data demodulation. Scattering loss of an antenna is a function of the size of the antenna
D relative to the decorrelation distance.

When to is greater than D, the electric field is highly correlated across the face
of the antenna and the full gain of the antenna is realized. However, the antenna may
be located at a position where the incident power is in a deep fade. The solution to this
problem is to have multiple antennas physically separated by a distance larger than the
maximum decorrelation distance. The probability of having all antennas
simultaneously experience deep fades in the received power is then substantially
reduced.

The problem of spatial selectivity occurs when to is less than D and the electric
field is decorrelated across the face of the antenna. In this case, the induced voltages in
the antenna add noncoherently due to the random phase variations in the electric field,
and a loss of signal power, or equivalently of antenna gain, is the result. From another
perspective, this loss occurs when the angular scattering process responsible for
amplitude and phase scintillation and frequency selective effects also causes some of the
transmitted signal energy to be scattered out of the antenna beam.

Figure 15 shows examples of the matched-filter output amplitude for three levels
of spatially selective propagation disturbance, characterized by the ratio of the antenna
size to the decorrelation distance. The ratio of the frequency selective bandwidth to the
chip rate rate is 0.1, and the antenna is pointing along the line-of-sight. The top frame
is for the case where ko is much greater than D, and is just a reproduction of the
bottom frame of Figure 13. The middle frame is for a 9-/D ratio of 0.5 where the
scattering loss is 3.1 dB. The effect of the antenna is to preferentially attenuate the
signal energy arriving at large angles and also at large delays and thereby to reduce the
delay spread of the output signal. In the bottom frame where k./D is equal to 0.2, the
output signal is almost flat with very little delay spread distortion of the matched-filter
output. Although this substantially reduces the effects of frequency selective fading,
the cost is an 9.8-dB reduction in the average signal power.

Finally, Figure 16 shows examples of the matched-filter output amplitude for
three values of the pointing angle 00. The ratio of the frequency selective bandwidth
to the chip rate rate is 0.1, and the ratio of decorrelation distance to antenna diameter
is 0.5. The top frame for a pointing angle of zero is just a reproduction of the middle
frame of Figure 15. The average scattering loss for this case is 3.1 dB. The bottom
two frames show the matched-filter output amplitude for pointing angles of one-half
beamwidth (Eo=0o/2) with a scattering loss of 4.6 dB and one beamwidth (10=0) with
a scattering loss of 9.2 dB.
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Figure 15. Effects of spatially selective fading.
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Although the average scattering losses are about the same, the bottom frame of
Figure 16 (Io/D = 0.5 and O )=O() and the bottom frame of Figure 15 (9.jD = 0.2 and
E)0=0. are qualitatively quite different. For the case with the pointing angle equal to a
beamwidth, the received power is much more spread out in delay compared to the case
with zero pointing angle where the signal energy is concentrated near zero delay. This
is due to the fact that the antenna pointed away from the line-of-sight has relatively
higher gain at larg., angles and long delays and relatively lower gain at small angles
and short delays than does an antenna pointed along the line-of-sight. Thus for an
antenna pointed away from the line-of-sight, increased scattering loss does not
necessarily result in reduced frequency selective effects.
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Figure 16. Effects of beam pointing.
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APPENDIX A
PHASE VARIANCE DUE TO ELECTRON DENSITY FLUCTUATIONS

A relationship between the phase variance imparted on the wave as it propagates
through the ionization layer and the electron density fluctuations will be derived in this
appendix. This relationship is given by Equation 51 which was derived using the
Markov approximation. However, it will be shown here that the relationship requires
only that the layer thickness be large compared to the decorrelation distance of the
electron density fluctuations along the line-of-sight.

It was shown in Section 2 that the total phase change of the wave as it propagates
through the ionization layer is

0 = re) (ne) f (p,z,t) dz (243)

The autocorrelation function of the phase fluctuations is then

L L
()(p,t)4(p',t')) = (reX(ne)) 2 f dz jdz' ( (p,z,t) (p',z',t')) (244)

0 O

where L is the thickness of the scattering layer. For spatially and temporally stationary
random electron density fluctuations, the expectation must be a function of the
differences 8p=p-p', 6z=z-z' and 6t=t-t' only. Denoting the autocorrelation of (p,z,t)
by B,(6p,6z,6t) and the autocorrelation of 0(p,t) by BO(8p,8t), Equation 244 becomes

L L
BO(6p,6t) = (rcX(ne)) 2 J dz J dz' B,(8p,z,6t) (245)

0 0

This double integral may be reduced to a single integral by changing the order of
integration with the result

LB,(6p,6t) = (reX~ne)) 2 L Jdz (1l- - B(p,6Sz,6t) (246)

If the correlation distance of B,(fp,8z,8t) along the z direction is small
compared to L, then B;(8p,8z,6t) will become small before IzI/L approaches unity in
the integral, and the Iz1/L term may be ignored. The limits of the integral may then be
set to + oo and the integral reduces to

B0(6p,6t) = (reX.(nc)) 2 L f dz Br,(8p,6z,6t) (247)
-CO
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The remaining integral is denoted by A (c5p,&) so the autocorrelation of the phase

fluctuations is

130(8p,80 (rc(n,) )2 L A (5p,&t) , (248)

which is the same as the final expression in Equation 51.



APPENDIX B
CHANNEL PARAMETERS FOR K-4 ELECTRON DENSITY

FLUCTUATIONS

The expansion coefficients A0 and A2 are calculated in this appendix using the
quadratic approximation of the structure function A,(p) of the electron density
fluctuations and using the delta-layer approximation. From these coefficients, the
phase variance, decorrelation distance, and the coherence bandwidth of the signal
incident on the plane of the receiver are written in terms of physical parameters.
However, these channel p.r ;meters are computed from a disturbed ionosphere model
using the more general formalism of Wittwer 11979,19801 which accounts for the finite
thickness of the scattering region and other complicating effects. The purpose of this
appendix is only to illustrate the dependence of the channel parameters on geometrical
and electron density fluctuation parameters.

A power-law form of the PSD for the three-dimensional electron density
fluctuations is assumed:

StK) - 81 3c"F(n)LrLsLt (An)(
17 (n-3/2) (n.) 2 (1 + K.L.K)n (249)

where

L4 0L 2L ]yz (250)
0 Lyz L 2

The scales Lr, Ls, Lt and Lx, Ly, Lz, Lyz are defined in Section 2.6 in terms of the
penetration angle (D and the axial ratio q. For K.L.K >> 1, % is proportional to K 2n.
Thus a K-4 PSD for the three-dimensional electron density fluctuations corresponds to
the n = 2 case.

The structure function A (p) under the delta-layer approximation is given by
Equation 71 which is reproduced here:

00 
d2K

A,(p) = Jfexp (iKi.p) S (Ki,Kz=0) (2n)2 (71)
00(2)

Using Equations 249 and 250 and performing the angular integral, Equation 71
reduces to
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00

4N YcF(n) qLx (Ane) Jo K pLj_,p
I(n-3/2) Ly(ne)2  J (1 + K2 )n  K dK (251)

0

wr (n-l) qL x (An2C) (pL.)nl) 2  (, - )

2n-31"(n-i/2) Ly (ne)2 (p-Lj.p/fl') 2 Kn-Q P KLTp

where J0 is the Bessel function of order 0, Kn- is the modified Bessel function of order
n-i L_ is a 2-2 matrix containing the x-y components of L, and L- is the invcrse

matrix of L1 .

For all values of n except n equal to 2, A (p) can be expanded in a power series
of the form

( - 2 2 ,2

A1 - A2 ; + (252)A () A i, 'L L 2
x

where m = min (2,2n-2). For the n equal 2 case, A2 does not exist unless an inner scale
ii is imposed. This is accomplished by truncating the integral over K in Equation 251
at a cutoff K - L,/ki. For values of n greater than 2, the Jo Bessel function in the
integrand of Equation 252 can be expanded, and the resulting series can be integrated
term-by-term. The first twu terms of the expansion give

A =F(n-3/2) Ly (ne) + (253)

and

+ j - + n- I

AIN2  = __ IL X In-1~,  (254)
4(n-2) I + -nl (

In the limit that n eyuals 2, the A2 coefficient becomes

1I  k" L x

A ,  1+ 2 In I + 1 (255)

This expression can be further reduced in the limit that the inner scale is much smaller
than the outer scale (i.e. 9i << Lx) to give
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In (Lx/-i) (256)

Now the phase variance, decorrelation distances, and coherence bandwidth can
be written in terms of geometrical parameters and electron density fluctuation
parameters. Using Equation 52, the phase variance due to structured ionization is

L Xy 6 rc)V (An ) (257)

where L6 is the thickness of the delta layer. The decorrelation distances, decorrelation
time, and coherence bandwidth are defined in Equations 79, 80 and 81 respectively.
Using these definitions,

Ln Lx zt + Zr (258a)

Y= jln(Lx/ki) 2  (To z. (258b)

to = [1n(Lx/g i)j To(29

and

S 2AO 2  Lx zt + Zr
Toh-2c ln(Lx/-i) ZtZr (25)

These equations are only valid for the delta-layer approximation, for the
quadratic phase structure approximation, and for a K-4 three-dimensional electron
density fluctuation PSD. It can be seen from the equations that the decorrelation
distances and coherence bandwidth are only weakly dependent on the inner scale.
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APPENDIX C

ACCURACY OF ANGULAR INFE(;RATION I'ECHNIQUES

C.I INTRO)UCTION.

The mean signal power in a K,-Kv grid cell at the output of an antenna is

tk,+I/2)AK, (k-1/2)AKv

"\k k)dK [ dK, ....1 .:\ (k - k ,, =K 2d 2- K - (K , ,, K S K (K ,,. . (2 6 1 )

(k-I/2)AK, (kv-1/2)AKy

Equation 261 is quite general, but it requires that the power in each angular bin be
caiculated and stored for each antenna. This latter requirement results in
unacceptablely large arrays. However, Equation 261 can be approximated by assuming
that the antenna beam pattern varies slowly over the grid cells so G(Kx,K,) may be
pulled out of the integral. There are several ways that this can be done. The purpose
of this appendix is to calculate the accuracy of a few approximations to Equation 261.

In order to limit the scope of this calculation, isotropic scattering and a
uniformlv-weighted circular antenna will be assumed. Without further loss of
generality it can then be assumed that the antenna is pointed away from the line-of-
sight in the x-direction, or equivalently, that the pointing azimuth is zero. For this
case, the angular part of the GPSD is

V2 _ K2 2
SK(Kx,Kv) kti-exp'- , (262)

and the antenna beam pattern is

G(Kx,Ky) (Qexp 4 (263)

where Q-l is proportional to the square of the ratio of Lhe antenna diameter D to the
decorrelation distance:

41n2 D2

Q = I + (1028992 . (264)

[or this isotropic scattering and antenna case, the power at the output of the
antenna reduces to

1) 4In 2 0f)Q exP Q 02, (265)

where -,) is the pointing dirprtion e,,2,;,'n angle and 0 is the ,,mwiuth of the
antenna.
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The antenna-filtered decorrelation distance, "'Ich is the ,ariie in hoth the - and

y-directions, is

A = ,(20h

When the antenna is pointed in the K-( direction, the K, angular grid size is then given
by the expression

2(Q-1 ,K,) KKnmax
AK, = 2 Q + , (267a)N , Q kQ

and the K, angular grid size is

AK = 2 - - (267h)

where KK,rnax (Eqn. 217b) is determined by the condition that 99.9 percent of the
signal energy be in the K,,-Ky grid.

The exact expression for the received power will be compared to the total power
in the grid,

PGK =  EA(kx,ky) , (268)
kx=-Nx/2 ky =-Ny/2

to compute an zror in the total power

!PA - PGK
PE=, PA (269)

for each of the algorithms used to evaluate Equation 261.

C.2 ALGORITHMS.

The first approximation to the exact result is just Equation 261. This expression
will result in some error in the total power because of round-off errors in the
summation of the contributions from each grid cell and because of the finite size of the
angular grid. Additional error results when the beam is pointed near the edge of the
grid so part of the beam is pointed out of the grid. The magnitude of this error will be
apparent in the results of this analysis. With the assumptions of isotropic scattering and
an isotropic Gaussian beam pattern, the integrals indicated in Equation 261 can be
obtained in closed form with the result
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PA(K'- 1/'20AK Q," Q (Q- I )K(, k 2
E1 (kxky) : a erfc 1 2NQ

(k,+ \-2)AK\ .,\ Q (Q K ()
-erfc 1 : -

S (k, -1/2 IAK, Z. - 7k ,+ /20AK,.,-,Q

x <erfc " - -erfc ,

,.*here erfc( is the complementary error function, and where

&(o i-O

(1 .028997c) ( D (271)

The second approximation, and the one that is used in channel modeling, is
obtained by assumine that the antenna beam pattern is constant over an angular grid
cell and can therefore be pulled out of the integral. The result is the product of the
antenna beam pattern times a term that is equal to the incident power in a grid cell:

E2(kx,kN) = G(K ,K,) EIk,k) (272)

",here the incident power in a grid cell is

(k,+ 1/2)3,K- -, Ik+ 1/2 JAKv

dK, " dKyv2rt 2;k, SK(K ,K ) (273)

k -1 /2'A K, (k,- 1/_ )AKv.

The indicated integrals can again be expressed in terms of error functions:

1 k -l/2)ANK ,xk.i -(k y+ Il/2)A K ,,-i-) i
erfc _. - erfc 2X2l 2 .1.i - - -

I (k, -1/12 IK, k-j, -(kv+1/2)AKV io-
e, erfc .- e r f c (274 )

The advantage of this approximation is that the error function terius depend only on
the environment so they can be done once and used for all antennas thereby reducing
the required processing time and array sizes.

A third approximation to F'kuation 261 is similar to the previous approximation.
Rather than u',ing the antenna cain at the center of each angular grid cell, the gain
averagcd over the grid cell is used:
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(kx+l/2)AKx (k,,+l/2)AKy

F.- I (kxk-v d K dKv G(Kx,Kv) (275)
- AKAK\ 27r 2n(k,-1/ _)AKx (k,,-1/ _)AKy

'Writing the indicated intecrals in 'erms of error functions Lives the result:
It

(k,,.k ) = '(kx,kv\ - - 1276)
- AK\xAK,(Q-)I~

,(.)-1 [(k,-l/2)AKx-K i(. \,Q-i [(kx+1/2)AKx-K,I 2.,,
xerr. 2 - erfc 2

0r, - 1 (k, - 1/2)AKv , kj % Q-1 (k,--/2 )AK i_".X e "fc 2 erfc2

lnalI., a simple way to eliminate the problem created by Equation 261 is to do
aa,% vih the integral. This zeroth-order approximation is

k'AK,,AK.
["(k, .k,,) = 2." G(kAKx,kvAKv) SK(kxAKx,kvAKy) . (277)

(.3 RES L TS.

Ihe relative error (Equation 269) of the four algorithms is calculated for a
ange of the ratio of the decorrelation distance to the antenna diameter. The scattering

MS" of the antenna for this range of .JD is shown in Figure 9 for pointing angles of 0,
0,;2. and 0,. Figures 17. 18 and 19 .how the relative errors of the four algorithms for
the same set of pointing angles. For these calculations, a 32 by 32 angular grid is used
(i.e. N, and N, are set equal to 32).

When the pointing angie is zero, Algorithm I (solid line) has a relatively
onm,,tant error of about 0.(X05. This error is due to the fact that the size of the angular

and Doppler frequency grids are based on capturing 99.9 percent of the signal power.
The amount of power outside of the rectangular K,-Ky grid is then ,0. 9 9 9 which is
equal to 0.9995. Both Algorithms 2 (dashed line) and 3 (dotted line) for this case have
peak errors of about 0.002 to 0.003 which occur when the angular spread of theincident power is about equal to the antenna beamwidth (i.e., i- is approximately equal
to D). Algorithm 4 (dash-dot-dash line) has a max'num relative error for large values
of Z.,/D of about 2, which is clearly too large.

As the pointing angle increases, the maximum error of Algorithm 1 remains
constant because the angular grid is expanded in the direction the antenna is pointed.
Algorithm, 2 and 3 generally have errors which are close to or less than that of
Algorithm 1. The maximum error of these algorithms is less than 0.0035 for pointing
angle., up to one heamidth. When the pointing angle is equal to a beamwidth, the sign
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of the errors of Algorithms 2 and 3 change over the range of iJD resulting in errors
that are smaller in magnitude than that of Algorithm 1.

Algorithm 2 generally has a slightly smaller error than Algorithm 3 over the
ranges of ,;D and pointing angles considered in this analysis. Algorithm 2 is also
simpler to implement than is Algorithm 3. Based on these results, the second
algorithm is used in channel modelling.

....... (K)S(K}dK

C(K)f K)cdK -

fcG(K)dA'rS(K)dK
- - G(K)§-(K)A-K

- 7

1o/D

Figure 17. Relative error for pointing angle of 0.
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APPENDIX D
ANGLE-DOPPLER GRID CELL POWER

This appendix describes the algorithm used to compute the angle-Doppler grid
cell power, E(kx,ky,m), from the GPSD. This quantity is computed in the channel
simulation on a grid which has a minimum of 32x32 angular cells and 150 Doppler
cells. It is therefore necessary to have an efficient algorithm to compute the grid cell
power in order to minimized the computation time of the channel simulation.

D.1 CALCULATION OF GRID CELL POWER.

The first section of this appendix is primarily a review of material presented in
Sections 2 and 4 of this report. Implementation details of the algorithms used to
compute the angle-Doppler grid cell power are presented in the next section of this
appendix.

D.I.I Separation of Angular and Doppler Frequency Variables.

Recall from Section 4 that the most general form for EKD(kx,ky,mD) is given by
the expression:

(kx+1/2)AKx (ky+1/2)AKy (mD+1/2)ACOD

EKD(kx,ky,mD) = d1x f 2{d f SKD(Kx,Ky,WD)
(kx-1/2)AKx (ky- 1/2)AKy (m77D-1/2)ACOD

(278)

The integrand of this equation can be written in the form

SKD(KxKy,O)D) = SD(COD) SKC(Kx-CxtToJD/ix,Ky-CyttooD/ 9 -y) (279)

where

SD(O)D) = NTIr 0 exp - 4  (280)

and

7t 9x .y(21

SKC(Kx,Ky) - x1 
)

As described in Section 4.2.2, two tricks are used to efficiently evaluate the grid
cell power. The first trick is to take advantage of the translational properties of the
GPSD. The power in a Kx-Ky-COD grid cell is
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(mD+ 1/2)AW3D

EKD(kx,ky,mD) D SD(WD D) (282)

( D- 1/2 )AOD

(kx+l/2)AKx (ky+1/2)AKy

f dK fdKY
(k -1/2)AK x (ky- 1/2)AKy

The key to simplifying this expression is to note that the Doppler grid cell size is
relatively small because of the large number of Doppler samples that are required to
produce a long time realization. Thus it can be assumed that SKC is constant over a
Doppler cell, and Equation 281 reduces to a function of Doppler frequency times a
shifted function of angle:

EKD(kx,ky,mD) = ED(mD) EKc(k,-m,,ky-my) (283)

,wvhere

1{ [mD-1/2) 0AD] (mD+l/2)ToAOD] 1I
ED(mD) = 2 erfc e [f D1 2 ) tom (284)

The quantity EKc(kx-m,,ky-my) is the power in a shifted Kx-Ky grid cell where

(kx+l/2)AKx (ky+l/2)AKy

f Id7C f dK-K-- SKC(Kx,Ky) , (285)
(kx-1/2-)AKx (ky-/)~

and the Doppler shift indices are given by

F Cxt oCDl
mx = int iKx (286a)

CytTo(OD1
my = int [yAKy (286b)

Because of the Kx-Ky cross terms in the expression for SKC, an easily-evaluated
closed-form result is still not obtainable for EKC.

D.1.2 Evaluation of Angular Grid Cell Power on a Kp-Kq (;rid.

The second trick used in the channel model technique is to note that a rotation by
the angle "0 (Eqn. 108) in the Kx-Ky plane,
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1 t 1  2CxtCi t i x 8v
Stan- I C-)- 7 -

produces an orthogonal form of the GPSD which does not contain angular cross terms,
and is therefore readily integrated. This orthogonalized GPSD is given by Equation
109 which has the following form for its angular part:

SKC(KpKq) = . exp - K 2  
- Kq - (288)

_(1 c)(1 C2) 4(1 - cpt) 4(1 - cdt)i

The quantities .p, kq, Cpt, and Cqt are given by Equations 110 and Il1 in terms of the
corresponding quantities defined in the x-y coordinate system. The signal power in a
Kp-Kq grid cell is

EKC(kpkq) = Ep(kp) Eq(kq) (289)

where
1f  (kp-1!2)AKp p i p , pl(kp+I/2)AK k

Ep(kp) = -rerfc f - erfc R] (290)

2(kP21-C pt L 2 1-Ct , J
A similar expression holds for Eq(kq).

Now, EKC(kp,kq) can be computed on a fine Kp-Kq grid, and the values simply
assigned to the K,-Ky grid cell in which they fall. The Kx-Ky cell indices are
computed as follows:

S= int kpAKpcosi) - kqAKqsint) (291a)
I AKx I

k = t[kpAKpsin0 + kqAKqcosi3 (291b)
y = tAKy I

The total power in a Kx-Ky grid cell is then the sum of all EKC(kp,kq) values that fall
within the Kx-Ky cell. Roughly ten Kp-Kq grid cells are required within each Kx-Ky
cell for this brute-force procedure to work. Thus the Kp-Kq cell sizes are determined
by the expressions:

0.1
AKp cosI sin 2  (292a)

(AK + (AKy)

0.1
AKq = r sin 2i3 0 Cos 20 12 (292b)

JAKx) 2 + (AKy) 2 2
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The size of the Kp-Kq gnid is also needed before EKC(kpkq) can be computed.
The one-dimensional form of Kp-Kq angular power spectrum is

SKC(Kp) -4Xep L - 4 - (293)SK~~p "]1 C2 4 (1 Cptj

In order that the Kp grid contain a fraction 0 of the angular power, the grid must
extend to Kpmax where

Kprnax

10 = d~- Kprna kp 24J SKC(Kp) 27t erf (294)
pmaL2- 1 C2Kp~nmax

Solving for Kpmax gives the result:

Kp.max = KK,rnax ip (295 a)

where KK.max is given by Equation 217b. A similar expression holds for Kq.max:

_ l -C2t 29b

Kq,max = KK.max q(295b)

D.2 ALGORITHMS.

Implementation details of evaluation of EKc(kx-mx,ky-my) are discussed in this
section. This implementation minimizes the number of computations of EKC(kx-
mx,ky-my) by using the shifting property for non-zero Doppler frequencies, and
minimizes the number of computations of EKC(kp,kq) by carefully defining the region
of the Kp-Kq grid where EKC(kx-mx,ky-my) is required.

D.2.1 Shifted Angular Grid Cell Power EKC(kx-mx,ky-my).

In a computer implementation of the channel simulation, EKC(kx,ky) is an array
with indices

kx = -Nx/2, -Nx/2+l, , Nx/2-1 (296a)

ky = -Ny/2, -Ny/2+1, , Ny/2-1 (296b)

The shifting process is then just a matter of rearranging the data within the array.
Before discussing the algorithms used to shift the EKC array, it is useful to understand
the frequency at which this shifting process will occur.

D.2.1.1 Shifting Frequency. In evaluating the discrete impulse response
function using Equation 211, the Doppler frequency discrete Fourier transform is
performed last, after the two angular DFTs. The evaluation of the Doppler frequency
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spectral components fA(AT,mDAOD) starts at zero Doppler frequency (mD=0) and
proceeds to the maximum positive Doppler frequency (mD=ND/2-1). Spectral
components for negative values of Doppler frequency can be obtained by taking
advantage in the symmetry of the power in an angle-Doppler grid cell,
ED(mD)EKC(kx-mx,ky-my). Both ED and EKC are even functions of their arguments.
Thus ED(-mD) is equal to ED(mD), and EKC(kx+lmxl,ky+lmyl) is equal to EKC(-kx-
ImxI,-ky-ImyI). Hence the Doppler frequency spectral components for negative Doppler
frequencies can be evaluated using the angle-Doppler grid cell power calculated for the
corresponding positive Doppler frequencies with kxAKx and kyAKy replaced by
-kxAKx and -kyAKy in Equation 211. (The residual Doppler shifts, ex and ey, in
Equation 211 also change signs for negative Doppler frequencies.)

Now as each new Doppler frequency spectral component is computed (i.e. for
each value of mD, mD=l, 2, ... , ND/2-1), the incremental Doppler shift indices are

m, = int [. A- O) - Mx(mD-1) (297a)

my = int CyT IAWD - My(mD- 1) (297b)

where Mx(mD) and My(mD) are the cumulative shift indices

mD

Mx(mD) = Imx(mD) , Mx(-1) = 0 (298a)

mD
My(roD) = Imy(mD) , My(-1) = 0 (298b)

The corresponding residual shifts are

CxttomDACOD
tx = x Mx(mD)AKx (299a)

_ CytTcMDA(OD My(mD)AKx (299b)

Because the normalized Doppler frequency grid cell size (IOAOD) is small
compared to the normalized angular grid cell sizes (ixAKx and kyAKy) due to the fact
that there are generally more Doppler grid cells than angular grid cells (in one
dimension), the incremental Doppler shift indices mx and my may be zero for several
sequential values of mD. Thus, shifting of the EKC(kx,ky) array in the x-direction is
necessary approximately every kxAKx/CxtToA6)D Doppler cells, and shifting in the y-
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direction is necessary approximately every k-yAKy/CytToA(0D Doppler cells. Note,

however, that the residual shifts will change for every new value of MD.

D.2.1.2 Shifting Algorithm. Assume for the moment that EKc(kx,ky) has been

computed and that the shifted array EKc(kx-mx,ky-my) is desired. The actual

computation of EKC(kx,ky) for arbitrary kx and ky will be discussed in the next

subsection.

For non-negative values of Cxt and Cyt, the incremental Doppler shift indices mx

and mv will also be non-negative. However, the general model puts no restrictions on

the signs or the space-time correlation coefficients as long as the square root of the sum

of the squares of these coefficients is between zero and one. Therefore, a completely

general algorithm must include the possibility of positive and negative values of the

incremental Doppler shifts.

Now assume that EKC(kx-mx,ky) is desired where mx is positive. An algorithm

that performs this shifting is

EKc(Nx/2-1 ,ky) <-- EKC(NX/2 -1-mx,ky)

EKc(Nx/2-2,ky) -- EKC(Nx/2-2-mX,kY)

* (300)

EKC(-Nx/2+mx,ky) <-- EKc(-Nx/2,ky)

Note that after the shifting, EKc(-Nx/2,ky) through EKC(-Nx/2+mx-l,ky) have not

been defined. These grid cell powers will then need to be computed after the shifting

is performed.

If mx is negative, a shifting algorithm is

EKc(-Nx/2,ky) <-- EKC(-N,/2-mx,ky)

EKc(-Nx/2+l,ky) <- EKC(-Nx/2+1-mx,ky)

* (301)

EKC(NX/2-l+mx,ky) <-- EKC(Nx/2-1,ky)

Note that after the shifting, EKC(Nx/2+mx,ky) through EKC(Nx/2-1,ky) have not been

defined and will need to be computed.

Similar algorithms can be defined to shift EKC(Nx,ky+my) by positive or

negative my. The algorithm for computing EKC(kx,ky) is discussed next.
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D.2.2 Angular Grid Cell Power EKC(kx,ky)

Depending on the Doppler frequency, EKC may be computed over all or part of
the K,-K, grid. When the Doppler frequency is zero and EKC is computed for the
first time, then EKC is computed over the entire angular grid. However, for positive
values of the Doppler frequency, EKC is obtained by shifting and new values of EKC
are required only in a small region of the Kx-Ky grid. Angular grid cell power values
ibr negative Doppler frequencies are obtained directly from the corresponding positive
Doppler frequency values, and no new calculations of EKC are required.

This section describes an algorithm for computing EKC(kx,ky) with arbitrary
limits on the indices. In general the limits on kx and ky are kx,1 to kx, 2 and k,, 1 to
k,,2. When EKC Is computed for the first time,

kx,j -Nx/2 (302a)

N/2-1 (302b)

kyj -Ny/2 (302c)

ky,2 =Ny/2-1 Q 30 2d)

and afterward,

I -Nx/2 if mx > 0
kx,j = I ,N/+x fM (303a)

Nx/2+mx if mx < 0

k -Nx/2+mx-1 if mx > 0
k -, 

= ri (303b){Nx/2-1 if mx < 0

r -Ny/2 if my > 0ky,1  (303c)
i Ny/2 +my if my < 0

{Ny/2+my-1 if my > 0
ky2= Ny/2-1 if my < 0 (303d)

D.2.2.1 Kp-Kq Regions. Given these limits, the first task is to compute the Kx-
Ky region on the Kp-Kq grid defined by the limits. This rectangular region is defined
by the four points (Kx,1 ,Ky,I), (Kx, 1 ,Ky. 2), (Kx, 2,Ky,1 ), and (Kx, 2 ,Ky, 2) where

Kx,I = kx, - - Mx(mD) AKx (304a)

Kx.2 = kx. + - Mx(mD) AKx (304b)
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Kyl=[k~ 1'~ (304c)I-. -My I >~

K,= vj+ I- M y (11D) IIAKY (304d)

The corresponding KP-Kq, coordinates are

Kj=Kx.1 COS 1) + Kyj1 sin 0 (305a)

Kp_2 = KjCos P) + Kv.) sin i) (305b)

KP3=Kx, cos 0 + KV, 2 sin 0 (305c)

Kp,4 =KX.2 COS 1) + Kjsin P (305d)

Kqj K 1,1 cos P) - Kx,1 sin P) (305e)

Kq,2 =Ky,2 COS 15 - Kx,1 sin P (305f)

Kq.3 = cos2 COP - KX,2 sin P) (305g)

Kq. 4 = Ky, cos 15 - Kx,2 sin P . (305h)

T'he algorithm that determines the region of the KP-Kq plane that is encompassed
by the Kx-Ky region and that contains signal energy depends on Kp,1 being the smallest
KP value. If, in fact KP, 2 is less than Kp, 1 , then the Kp-Fq coordinates must be
renamed:

KP= KP,1  (306a)

Kq = Kq,i (306b)

Kpl= KP. 2  (306c)

Kq.1 = Kq, 2  (306d)

KP. 2 =KP,3  (306e)

Kq, 2 = Kq*3  (3060)

KP3= KP'4  (306g)

Kq. 3 = Kq,4  (306h)

Kp.,j= Kp(3061)

K.i= Kq (306j)
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With this ordering of the Kp-Kq coordinates, the smallest value of Kp is Kp,l and
the largest value is Kp, 3 . The smallest value of Kq is Kq, 4 and the largest value is Kq,2.
Thus the K.-Ky region is outside of the limits of the Kp-Kq grid if Kp, 3 < -Kp,max,
Kp., > Kp,rnax, Kq,2 < Kq.max, or K,, 4 > K(I ma,. If none of these conditions are met,
then there is signal energy within the K,-Ky region, and the calculation continues. If
any of these conditions are met, then the Kx-Ky region falls outside of the region in the
Kp-Kq plane where there is signal power, and there is no need to continue the
calculation.

There are nine separate cases, illustrated in Figure 20, when the overlap between
the K,-Ky region and the Kp-Kq region containing 99.9 percent of the signal energy is
considered. The rectangle for each case corresponds to the K,-Ky region over which
the calculation of EKC is to be done. The numbered comers correspond to the Kp-Kq
coordinates of the Kx-Ky rectangle given by Equation 305. The dashed lines illustrate
the +Kq,max limits of the Kp-Kq grid. Case I configurations are determined by the
condition that -Kq,max < Kq,l < Kq,max. Case 2 configurations occur when this
condition is not met. The shaded areas in the figures illustrate the part of the Kp-Kq
plane bounded by the Kx-Ky region that also meet the condition -Kq,max < Kq <
Kqnax.

D.2.2.2 Kp-Kq Power Centroid Lines. Once the Kx-Ky region on the Kp-Kq
plane has been defined, an efficient method of computing the signal power is to draw a
power centroid line across the region, as illustrated by the lines across the shaded areas
in Figure 20. In two cases (2a-1 and 2b-1), this line is colinear with the +Kq,max line.
The power in Kp-Kq grid cells is calculated for each value of Kp in the shaded regions,
by starting with the cell on the line and proceeding to larger values of Kq until the
upper Kq boundary of the shaded region is encountered. Then the power in the first
cell below the line is calculated and so on until the lower Kq boundary of the shaded
region is encountered.

The endpoints of the line depend on the case. For case 1:

Kp,start Kp,l (307a)

Kp,stop= Kp, 3  (307b)

Kq,start = Kq,i (307c)

Kq,stop = Kq,3 (307d)
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For case Ila:

Kp,scart Kp,1  (308a)
K KqnuKK,.) , - Kp,a,(0h

KpStop Kp.4 + (KlxK )Kq,,Kq.4  (0

Kq,,at Kqjl (308c)

KqtkoP Kq~niax( (308Xd)

For case I hb.

Kp~slart Kp.1  (309a)

K)'t Kp,: - (Kq~lma,,±4Kq,2) P-I{. (309b)
Kq, ,taqi Kqi.30c

KqjIoP -Kq,ni:ix .(309d)

For case 2a:

Kp,,start Kp.1 + (K1 max-Kqi) K~ 4-Kqi (3 1 Oa)

KP.Srop KP.3  (3 10b)

Kq.,,Iart Kqrnax (31 Oc)

Kq.\Iop K qI (3 1 Od)

For case 2a- 1:

K 3 K
Kp~starp Kp~l + (Kq~rmax-Kq,4 ) WKP 4KP (311 a)P,~ q.4 q

Kq~stat Kq~nlax (311 c)

Kstp Kq~max (311 Id)

For case '-a-2:

Kpsat=Kp. I + (K1~a ,1~- K1.I 1 -Kz 1  (312a)

K,( =Kp_2 - (K1 rilax+Kq ,,, F.'K (312b)

109



Kq~slarl Kq.m1ax (312c)

KqStOP -Kqmax 0 1 2d)

For case 2h:

K~KP2- (KraxKj (313a)

K.I KP'.; (31 3b)

Kq.siart =-Kqniax (3 130)

Kq,stop Kq.3 (313d)

For case 2b-lI-

Kp,start =Kp,1 - (Kq~rmax+Kq,i) KP, 2-KP,1  (314a)

Kq,2Kq,3

Kq~tart =-Kq~rnjax (314c)

Kq'StOP = Kq,max -(3 14d)

Finally, for case 2b-2:

Kp~start Kp.1 - (Kq~max+Kq,i) Kq,2-Kq,1 (35a

Kq:;Kq,4

Kq~siart =-Kqrniax (315c)

Kstp=Kqrniax (315d)

Once the endpoints of the line are defined, the slope of the line is

SL - .K~sar (316)

D.2.2.1 KPLA:.flaLKX Ky Grid Power. The final step is to compute the Kp-Kq
grid cell power and to assign that power to Kx-Ky grid cells within the Kx-Ky region.

The indices of the Kp grid cells within the Kx-Ky region are
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kp,start int ax(K psar,-Kpax) + sign (Kp.start)] (317a)pmin( AKp

kp=sto int L AKp -s-opKP.m + 2 sign (Kp.stop) (317b)

where sign (.) is the sign function (i.e. a function that is equal to +1 is the argument is
positive and is equal to -1 otherwise), and the maximum kq index is

kq,max = int LKax + I sign (Kq,max). (318)

The minimum and maximum functions that appear in Equation 317 constrain Kx-Ky
region to also be within the +Kp,max bounds where 99.9 percent of the signal energy
lies. The 1/2 sign (K) terms cause the integer function to round its argument in the
desired way.

Now a loop is executed over the kp index, starting at kp,start and ending at
kpstop. For each value of kp, the energy in a AKp grid cell is given by Equation 290
which is reproduced here:

E(k = 1 erfc (kp-1/2)AKp -P erfc [(kp+ I /2)AKplp  (290)
L2 - C J2, L 2-1 - C, (

Corresponding to each value of kp is a range of kq values. The loop over Kq
values starts at the power centroid line, which has a Kq value of

KqL = Kq.start + (kpAKp - Kp.start) SL (319)

and an index of
FKQ,+ 1 1ig

kq,L = int + I sign (Kq,L) (320)AKq 2

The Kq loop starts at the kq value of the line and proceeds to higher values of kq until
the limits of the Kx-Ky region are encountered, as described below. Then the
calculation is restarted at the first Kq cell below the line and kq is decremented until the
Kx-Ky region boundary is again reached. For each Kq grid cell, the signal power is

1  r(kq-1/2)AKqk I (kq+l/2)AKq]q
Eq(kq) = rf i/ 2

1  - erfc - (321)

and the total Kp-Kq grid cell power is just Ep(kp)Eq(kq).
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Finally, the Kp-Kq grid cell power is assigned to K,-Ky grid cells, and
Ep(kp)Eq(kq) is added to the power already assigned to each Kx-Ky grid cell. The K,-
Kv grid cell indices are computed as

kx = int ikpA K pcos 5 -kqAKqsirn + Mx(mD)AKx' (322a)t AKx (

int FkpAKpsinP + kqAKqcosi} + My(mD)AKyJ (322b)ky AKy 32b

These indices are also used to stop the loop over kq. This loop is terminated whenever
kx or ky fall outside of the limits given by Equations 302 or 303. Thus when kq is
being incremented for cells above the power centroid line, the kq loop is continued as
long as kx,1 < k, < kx, 2 and ky,j < ky < ky,2. When either of these conditions are not
met, the loop is reset to the first kq value below the line and kq is decremented as long
as k,, 1 < kx <__ kx, 2 and ky,I < ky < ky.2. When either of these conditions are not met,
the next value in the kP loop is executed.
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APPENDIX E
LIST OF ACRONYMS

ACIRF - Antenna/channel impulse response function
dB - Decibel
DFT - Discrete Fourier transform
DNA - Defense Nuclear Agency
FFT - Fast Fourier transform
FSK - Frequency-shift keying
GPSD - Generalized power spectral density
MHz - Million Hertz (106 cycles per second)
MRC - Mission Research Corporation
PSD - Power spectral density
PSK - Phase-shift keying
RF - Radio frequency
TEC - Total electron content
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APPENDIX F
LIST OF SYMBOLS

Symbol Page
(where first used)

A(p) = Aperture weighting function 38
a = Aperture weighting function normalization factor 45
Ax = Antenna pointing factor 70
Ay = Antenna pointing factor 70
Ar(p,t) = Structure function 9
A0  = Structure function at zero offset, A (0,0) II
ao = Beamwidth scale factor 52
A2  = Quadratic coefficient of structure function expansion 20

B = Geomagnetic field 19
BO(Sp,St) = Autocorrelation of the phase of the RF wave 87

B,(p,5z,8t) = Three-dimensional structure function 87

c = Speed of light in vacuum (2.997925x10 8 m/s) 4
C = Space-time correlation coefficient 18
Cpt = P-direction space-time correlation coefficient 34
Cqt = Q-direction space-time correlation coefficient 34
Cxt = X-direction space-time correlation coefficient 21
Cyt = Y-direction space-time correlation coefficient 21

D = Circular antenna diameter 40
d = Propagation distance difference 26
Du = Rectangular antenna size in u-direction 47
Dv = Rectangular antenna size in v-direction 47
dx = Maximum x-direction separation of antennas 71
dy = Maximum y-direction separation of antennas 71

E(r,o,t) = Complex envelope of electric field 4
e = Base of natural logarithms (2.71828)... 4
E(r,co,t) = Electric field of RF wave 3
EA(kx,ky) = Mean signal power in an angular grid cell at output of an

antenna 93
EA(kx,ky,mD) = Mean signal power in an angular-Doppler grid cell at output

of an antenna 64
El(kx,ky = Mean incident power of angular grid cell 95
EKC(kx,ky) = Mean signal power in an angular grid cell 65
EKD(kx,ky,mD) = Mean signal power in an angular-Doppler grid cell 64
ED(mD) = Mean signal power in a Doppler grid cell 65
Ep(kp) = Mean signal power in a Kp grid cell 65
Eq(kq) = Mean signal power in a Kq grid cell 65
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LIST OF SYMBOLS (Continued)
Symbol Page

E0  = Complex envelope of electric field at transmitter 11
EI(kx,ky) = Mean power of angular grid cell for algorithm 1 95
E 2(k.x,ky) = Mean power of angular grid cell for algorithm 2 95
E3(kx,ky) = Mean power of angular grid cell for algorithm 3 96
E4(kx,ky) = Mean power of angular grid cell for algorithm 4 96
erf (x) = Error function 70
erfc (x) = Complementary error function 30
erf-1 (x) = Inverse error function 69

F(z) = Wittwer's F function 28
Gk = Antenna output frequency selective bandwidth 50
fD Doppler frequency shift 37
fo= Channel frequency selective bandwidth 23
fl(R) = General function of n-dimensional vector R 8
f2(f 1 ) = General function of the function f, 8

G(K 1 ) = Antenna power beam pattern 39
gZK ) Antenna voltage beam pattern 38

H(r,wo,t) = Complex envelope of magnetic field 4
3-(r,o),t) = Magnetic field of RF wave 4
1l(o,t) = Channel transfer function 75
h(pt,t) = Channel impulse response function at position p 35
hcrt) = Channel impulse response function 75
f(KI, tOD) = Fourier transform of the impulse response function 60
hA(po,t,t) = Impulse response function at antenna output 59

= - 4
int jx] = Integer function (integer part of argument) 62

j = Index of delay grid 66
Jo(x) = Bessel function of zeroth order 90
J1 (x) = Bessel function of first order 46

K = K-space vector 19
K = Magnitude of K 21
k = Wave number in vacuum (k=ow/c) 5
(k) = Mean wave number in ionization 6
K' = Dummy K1 vector 39
K" = Dummy K1 vector 3'
kd = Relative wave number (k, - k2)/2 13
kF = Frequency index 76
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Kn-l(x) = Modified Bessel function of order n-I 90
Kp = Component of K1 in p-q-z coordinate system 34
kp = Index of Kp grid 65
Kp,mnax = Limit of Kp grid 102
Kp,stari = Starting point of power centroid line 107
kp-start = Starting index of power centroid line 111
Kpstop = Stopping point of power centroid line 107
kp,stop Stopping index of power centroid line 111
Kp, 1  Limit of the Kp-Kq region for calculation of EKC 106
Kp, Limit of the Kp-Kq region for calculation of EKC 106
Kp,= Limit of the Kp-Kq region for calculation of EKC 106
Kp-1 Limit of the Kp-Kq region for calculation of EKC 106
Kq Component of K_ in p-q-z coordinate system 34
kq Index of Kq grid 65
Kq.L Power centroid line Kq value III
kq. L Power centroid line Kq index 111
Kqniax = Limit of Kq grid 102
kq,nax = Maximum Kq index 111
Kq,start = Starting point of power centroid line 107
Kq.stop = Stopping point of power centroid line 107
Kq,1  = Limit of the Kp-Kq region for calculation of EKC 106
Kq,2 = Limit of the Kp-Kq region for calculation of EKC 106
Kq,3 = Limit of the Kp-Kq region for calculation of EKC 106
Kq,.4  = Limit of the Kp-Kq region for calculation of EKC 106
Kr = Component of K in r-s-t coordinate system (see Fig. 2) 19
Ks = Component of K in r-s-t coordinate system (see Fig. 2) 19
ks = Mean wave number (k, + k2)/2 13

Kt = Component of K in r-s-t coordinate system (see Fig. 2) 19
Ku = Component of K1 in u-v-z coordinate system 16

K, = Component of K1 in u-v-z coordinate system 16
Kx = Component of K1 in x-y-z coordinate system 24
kx = Index of K, grid 63
KX = Dummy Kx variable 63
Kxnax = Limit of Kx grid 70
Ky Limit of the Kx-Ky region for calculation of EKC 105
kx,j = Lower limit of Kx grid index 105
Kx.2 = Limit of the Kx-Ky region for calculation of EKC 105
kx,2 = Upper limit of Kx grid index 105
Ky = Component of K1 in x-y-z coordinate system 24
ky = Index of Ky grid 63

Ky = Dummy Ky variable 63
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Ky,max = Limit of Ky grid 70
Ky,1  = Limit of the K,-Ky region for calculation of EKC 106
ky,= -- Lower limit of Ky grid index 105
Ky. 2  = Limit of the Kx-Ky region for calculation of EKC 106
ky.2 = Upper limit of Ky grid index 105
Ko = Antenna pointing direction 38
Kou = Component of K0 in u-v-z coordinate system 45
K=v = Component of Ko in u-v-z coordinate system 45
Kox = Component of K0 in x-y-z coordinate system 48
Koy = Component of K0 in x-y-z coordinate system 48
k, = Mean wave number for frequency o1  7
k2 = Mean wave number for frequency w2 7
K1  = K vector for position vectors in plane normal to

line-of-sight 16

L = Scattering layer thickness (see Fig. 1) 3
L = Electron density fluctuation scale size matrix 89
i = Path length along propa2ation direction 14
kA = Decorrelation distance at antenna output 94
2 Ax = X-direction decorrelation distance at antenna output 51
i Ay = Y-direction decorrelation distance at antenna output 51
i = Electron density fluctuation inner scale size 90
p = P-direction decorrelation distance 34

9q = Q-direction decorrelation distance 34
Lr = Striation scale size in r direction orthogonal to B 19
LS = Scattering loss 49
Ls = Striation scale size in s direction orthogonal to B 19
Lt = Striation scale size in t direction parallel to B 19
Lx = Striation scale size in the x-y-z coordinate system 20
ix = Channel x-direction decorrelation distance 22
Ly = Striation scale size in the x-y-z coordinate system 20
.y = Channel y-direction decorrelation distance 22

Lyz = Striation scale size in the x-y-z coordinate system 20
Lz = Striation scale size in the x-y-z coordinate system 20
L8 = Delta layer thickness 14
Lo = Scale size of electron density fluctuations 6
to = Minimum channel decorrelation distance 22
Lj_ = L matrix in plane normal to line-of-sight 90
L-. = Inverse of the matrix L 1  90

In (x) = Natural logarithm 5
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M(co) = Spectrum of transmitted modulation 75
m = One-dimensional electron density fluctuation spectral index 90
max [x,yl = Maximum function (equal to the larger of x and y) 71
mD = Index of Doppler frequency grid 63
mD = Dummy Doppler frequency index 103
min [x,y] = Minimum function (equal to the smaller of x and y) IIl
mt(t) = Transmitted modulation 36
mx = X-direction Doppler shift index 62
Mx(mD) = Cumulative x-direction Doppler shift index 103
my = Y-direction Doppler shift index 62
My(mD) = Cumulative y-direction Doppler shift index 103

n = Spectral index of electron density fluctuations 89
ne(r,t) = Free electron density 5
(ne) = Mean free electron density 5
ND = Number of Doppler frequency grid cells 63
ND,min = Minimum required number of Doppler frequency grid cells 73
NF = Number of frequency samples 76
NT = Total electron content (TEC) 37
N1  = Number of time samples 67
nt = Index of time grid 67
Nx = Number of Kx grid cells 63
NY = Number of Ky grid cells 63
Nc = Number of delay samples 67
No = Number of samples per decorrelation time 69

P = Antenna pointing effect term in filtered frequency selective
bandwidth 50

PA = Mean power in the GPSD at the output of an antenna 49
Pj = Mean power in the jth delay grid cel, 74
PGK = Total power in angular grid 94
PGT = Total power in the delay grid 74

Px = Kox coefficient in antenna pointing effect term 50
Py = Koy coefficient in antenna pointing effect term 50
Pxy = KoxKoy coefficient in antenna pointing effect term 50
P0  = Mean power in the GPSD 27

Q = Isotropic scattering and antenna filtering effect factor 52
q = Axial ratio of striations 20
QX = Antenna filtering effect factor 48
Qy = Antenna filtering effect factor 48

QXY = Antenna filtering effect factor 48
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Q0 Antenna filtering effect factor 48

R = Free space propagation distance from transmitter to receiver 37
R = General n-dimensional vector 8
r = Position vector 3
r - Magnitude of the vector p 46
A
r - Unit vector in propagation coordinate system (see Fig. 2) 19
Rc = Chip rate 76
re = Classical radius of the electron (2.8179x10- 15 m) 5

S = Transport equation source term 12
S (K ,(1)D) = Generalized power spectral density (GPSD) 24
A 

1 -s = Unit vector in propagation coordinate system (see Fig. 2) 1 )
SA(KI,r,0nD) = GPSD of signal at output of an antenna 40
SA(Kx) = Angular spectrum at antenna output 70
SA() = Delay spectrum at antenna output 74
SA(CD) = Doppler frequency spectrum at antenna output 72
SD(cOD) = Doppier frequency spectrum of the GPSD 24
SK(K) = Angular spectrum of the GPSD 93
SKC(K9) = Angular spectrum of the GPSD used in channel modelling 62
SKC(Kp) = One-dimensional angular spectrum of the GPSD used in

channel modelling 102
SKD(K-, bD) = Angular-Doppler spectrum of the GPSD 34
SKS(KI) = Doppler shifted version of SKC(Ki) 63

SKE(KT) = Angular-delay spectrum of the GPSD 24
SL = Slope of power centroid line 110
S,(K) = PSD of electron density fluctuations 19
St(t) = Delay distribution for fixed angle-of-arrival 26

S-cD(,O)D) = Delay-Doppler scattering function 30
S = Transport equation source term 1 9
S = Transport equation source term 2 11
sign (x) = Sign function (equal to the sign of argument) 111

t = Time 3
t' = Dummy time variable 9
A
t = Unit vector in propagation coordinate system (see Fig. 2) 19
Tc = Chip duration 75
tp = Propagation time 26
To = Decorrelation time of striations 21

t = Time 1 7
t2  = Time 2 7
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U(r,w,t) = Scalar envelope of electric field 6
u = Spatial coordinate in plane normal to line-of-sight 16
A
u = Unit vector in antenna coordinate system (see Fig. 8) 43
u(p,t) = Received signal at position p and time t 36
u(T,t) = Received signal at delay T and time t 75
UA(P(,O),t) = Scalar envelope of electric field out of an antenna at po 38
Uo( p,t) = Transmitted signal 10

v = Spatial coordinate in plane normal to line-of-sight 16
A A A
V = Unit vector in antenna coordinate system normal to u and z

(see Fig. 8) 43
= Velocity of scattering layer for frozen-in model 18

X = Mean x-position in plane normal to line-of-sight 12
x = X-coordinate in plane normal to line-of-sight 6
x = Dummy x variable 10
A
x - Unit vector in propagation coordinate system (see Fig. 2) 19

= X-component of vector Po 62
x1 = X-coordinate of position 1 in plane normal to line-of-sight 12
X- = X-coordinate of position 2 in plane normal to line-of-sight 12

Y = Mean y-position in plane normal to line-of-sight 12
Z = Y-coordinate in plane normal to line-of-sight 6
y = Unit vector in propagation coordinate system (see Fig. 2) 19
Yo = Y-component of vector Po 62

yi I Y-coordinate of position I in plane normal to line-of-sight 12

Y2 = Y-coordinate of position 2 in plane normal to line-of-sight 12

z = Distance along the line-of-sight 3
z = Dummy z-distance variable 6
z = Dummy z-distance variable 10
A
z = Unit vector in propagation coordinate system (see Fig. 2) 19
Zr = Line-of-sight distance from scattering layer to receiver

(see Fig. 1) 3
7A = Line-of-sight distance form transmitter to scattering layer

(see Fig. 1) 3

c1 = Delay parameter in the GPSD 24
cu = U-direction antenna beam pattern parameter 45
Cty = V-direction antenna beam pattern parameter 45
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f3() = Frequency dependence of index of refraction 8
P = 13((01) 9
32 = 3(0 2) 9

F(n) = Gamma function 89
F(8r,8o)6,t) = Two-position, two-frequency, two-time Mutual Coherence

Function 2
F(p) = Two-position mutual coherence function 17
F(w) = Two-frequency mutual coherence function 17
F(t) = Two-time mutual coherence function 17
A
F(K = Fourier transform of F(p) 17
A

F(T) = Fourier transform of F(mo) 17
A

[(WD) = Fourier transform of F(t) 17
A

F(r,t, D) = Fourier transform of F(r,wt) 40
A

y = Distance parameter in solution for 1-1  17

FA(p,W,t) = Mutual coherence function at antenna output 38
FA(t) = Temporal coherence function at antenna output 50
FA(x) = Spatial coherence function at antenna output 51
F0  = Free space mutual coherence function 11
F, = Mutual coherence function without free space contribution 11
A

f1 = Fourier transform of F, 17
F2 = Mutual coherence function factoi, I = 1 21 3 15
F3  = Mutual coherence function facto;, F1 = F2F 3  15

6(x) = Dirac delta-function 9
8m.n = Kronecker delta symbol 68
AKp = Angular grid Kp cell size 65
A.Kq = Ang I) grid Kq cell size 65
AKx = Angular grid Kx cell size 62
AK, = Angular grid Ky cell size 62
Ar,ekr,t) = Free electron density fluctuation 5
Sr = Relative position 2
At = Time sample size 67
8t = Relative time 2
8z = Relative distance along line-of-sight 87
5P = Relative position vector in plane normal to line-of-sight 87
AT = Delay sample size 66
A(0 = Frequency grid sample size 76
8o = Relative radian frequency 2
AWD = Doppler frequency grid cell size 63
6/5f = Functional derivative (differential with respect to function f) 8
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E = Dielectric constant 4
EX = Kx grid shift residual 62
y = Ky grid shift residual 62

E = Dielectric constant fluctuation 5

= Relative x-position in plane normal to line-of-sight 12
= Fraction of signal power in a grid 69

- Relative y-position in plane normal to line-of-sight 12

0 = Elevation angle measured from line-of-sight 45
-= Rotation angle between x-y-z and p-q-z coordinate systems 34

(OT(W) = Dispersive phase shift due to mean ionization 35
(0T(O)) = First derivative of phase shift due to mean ionization 36
(OT())= Second derivative of phase shift due to mean ionization 36
Or = Scattering angle at the receiver 26
t = Scattering angle at the transmitter 26
u = Scattering angle about the antenna u-axis 44

0V = Scattering angle about the antenna v-axis 44
ex = Scattering angle about the propagation x-axis 25

= Scattering angle about the propagation y-axis 25
O0 = F: iting direction elevation angle (see Fig. 8) 43

00 = AEL,-ina 3-dB beamwidth 45
0-u = Antenna 3-dB beamwidth about u-direction 45
0o = Antenna 3-dB beamwidth about v-direction 45

K = Normalized grid variable Kx ix, Ky ky, or 0 0WD 69
Kmax = Maximum value of grid variable 69
KD,max = Maximum value of X for Doppler frequency grid 69
KK.max = Maximum value of K for angular grids 69

X = Wavelength of RF wave 6
Ax = Asymmetry factor 22
Ay = Asymmetry factor 22

3(p,z,t) = Normalized electron density fluctuation 8
;N(K _,,0)D) = Complex, normally-distributed, zero-mean,

unity-power random number 61
U.x = Uniformly distributed random number on the interval [0,1) 67

rU,y = Uniformly distributed random number on the interval [0,1) 67u= Uniformly distributed random number on the interval 0,1) 68
rU, = Uniformly distributed random number on the interval 10,1) 68
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71 Pi (3.141592654 )... 5

p = Two-dimensional position vector in the plane normal to
line-of-sight 7

V - fl ,,rnm.; n ", ot- r

p = Dummy p vector 38
Po = Antenna position in plane normal to line-of-sight 18
P1 = Position 1 in plane normal to line-of-sight 7
P2 = Position 2 in plane normal to line-of-sight 7

(To = Angle-of-arrival standard deviation 48

G 0x = Angle-of-arrival variance about the x-axis 28

cT=n Angle-of-arrival variance about the y-axis 28

= Time-of-arrival variance 27
= Phase variance imparted on RF wave 13

r= Delay (relative time-of-arrival) 16
= Dummy delay 60

(T = Mean time-of-arrival 27
() Mean squared time-of-amval 27
TA = Antenna output decorrelation time 50

N.ia = Maximum TA for all antennas 73
"Am1 = Minimum TA for all antennas 73
To = Channel decorrelation time 22

P = Penetration angle (see Fig. 2) 19
0 = Phase of propagating wave 14
(P = Azimuth angle 46
O = Azimuth angle of antenna pointing Cdrection (see Fig. 8) 43

=P Rotation angle (see Fig. 8) 43

)= Radian radio frequency 3
WA = Mean Doppler shift at antenna output 51
Wo0 h = Coherence bandwidth 22
WoD = Doppler radian frequency 16
(0D = Dummy Doppler radian frequency 60

COD.rna, = Limit of WOD grid 72
W= Radian plasma frequency 5
(02p)= Square of radian plasma frequency evaluated at

mean free electron density 6
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coo = Carrier radian frequency 21
co1 = Radian radio frequency 1 7

Co) = Radian radio frequency 2 7

=/ax Partial derivative 6

V. = Gradient operator 4
Vd = Gradient operator for relative position coordinates 13
Vs = Gradient operator for mean position coordinates 13
Vx = Curl operator 4
V2  = Laplacian operator 5
Vs  = Laplacian operator for mean position coordinates 12

2 = Laplacian operator for relative position coordinates 12

V2 = Laplacian operator in plane normal to line-of-sight 62
V1I = Laplacian operator at position p, 72

V 2  = Laplacian operator at position P2 7
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ATTN: R L BOGUSCH ATTN: C GILMAN

MISSION RESEARCH CORP R & D ASSOCIATES
ATTN: DAVE GUICE ATTN: G HOYT

ATTN: L DERAAB
MISSION RESEARCH CORP

ATTN: B R MILNER R & D ASSOCIATES
ATTN: C LONGMIRE ATTN: D CARLSON
ATTN: D KNEPP ATTN: J THOMPSON
ATTN: D LANDMAN
ATTN: FFAJEN RAND CORP
ATTN: F GUIGLIANO ATTN: C CRAIN
ATTN: G MCCARTOR ATTN: E BEDROSIAN
ATTN: K COSNER
ATTN: M FIRESTONE RAND CORP
ATTN: R BIGONI ATTN: B BENNETT

2 CYS ATTN: R DANA
ATTN: R HENDRICK RJO ENTERPRISES/POET FAC
ATTN: R KILB ATTN: STEVEN KRAMER
ATTN: SGUTSCHE ATTN: WBURNS
ATTN: TECH LIBRARY

ROCKWELL INTERNATIONAL CORP
MITRE CORPORATION ATTN: R POTTER

ATTN: M HORROCKS
ATTN: R C PESCI SCIENCE APPLICATIONS INTL CORP
ATTN: W FOSTER ATTN: C SMITH

ATTN: D HAMLIN
MITRE CORPORATION ATTN: O SACHS

ATTN: G CAMPARFTTO ATTN: L LINSON
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DNA-TR-90-9 (DL CONTINUED)

SCIENCE APPLICATIONS INTL CORP TRW INC
ATTN: H SUNKENBERG ATTN: ED SIMMONS
ATTN: LIBRARY

TRW SPACE & DEFENSE SECTOR SPACE

SCIENCE APPLICATIONS INTL CORP ATTN: D M LAYTON
ATTN: S ROSENCWEIG

USER SYSTEMS, INC
SPARTA INC ATTN: S W MCCANDLESS, JR

ATTN: D DEAN
UTAH STATE UNIVERSITY

SRI INTERNATIONAL ATTN: K BAKER, DIR ATMOS & SPACE SCI
ATTN: R LIVINGSTON ATTN: L JENSEN, ELEC ENG DEPT
ATTN: R T TSUNODA
ATTN: W CHESNUT VISIDYNE, INC
ATTN: W JAYE ATTN: J CARPENTER

STEWART RADIANCE LABORATORY FOREIGN
ATTN: R HUPPI

FOA 2
TELECOMMUNICATION SCIENCE ASSOCIATES ATTN: B SJOHOLM

ATTN: R BUCKNER
FOA 3

TELEDYNE BROWN ENGINEERING ATTN: T KARLSSON
ATTN: J FORD
ATTN: J WOLFSBERGER, JR DIRECTORY OF OTHER
ATTN: N PASSINO

BOSTON UNIVERSITY
TOYON RESEARCH CORP ATTN: MICHAEL MENDILLO

ATTN: J ISE
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